Residual Channel Attention Connection Network for Reference-based Image Super-resolution

Ruirong Lin, Nangfeng Xiao
{"title":"Residual Channel Attention Connection Network for Reference-based Image Super-resolution","authors":"Ruirong Lin, Nangfeng Xiao","doi":"10.1109/ICCSS53909.2021.9722011","DOIUrl":null,"url":null,"abstract":"Compared with single image super-resolution (SISR), reference-based image super-resolution (RefSR) utilizes additional references (Ref) to recover more realistic texture details, achieving better reconstruction performance. Most recent works focus on transferring relevant texture features from Ref to low-resolution (LR) images. However, those works ignore the high-frequency information existing in the LR space, leading to performance degradation when irrelevant Ref images are given. To address this issue, we propose a residual channel attention connection network for reference-based image super-resolution (RCACSR), which fuses valuable high-frequency information in LR space with high-resolution (HR) texture details of Ref. Specifically, the proposed residual channel attention connection network (RCACN) can extract more complex features from the LR space. Moreover, an enhanced texture transformer is presented, which can search and transfer texture features more accurately from Ref. Extensive experiments have demonstrated that the proposed RCACSR is superior to the state-of-the-art approaches in the aspects of both quantitative and qualitative measurements.","PeriodicalId":435816,"journal":{"name":"2021 8th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSS53909.2021.9722011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Compared with single image super-resolution (SISR), reference-based image super-resolution (RefSR) utilizes additional references (Ref) to recover more realistic texture details, achieving better reconstruction performance. Most recent works focus on transferring relevant texture features from Ref to low-resolution (LR) images. However, those works ignore the high-frequency information existing in the LR space, leading to performance degradation when irrelevant Ref images are given. To address this issue, we propose a residual channel attention connection network for reference-based image super-resolution (RCACSR), which fuses valuable high-frequency information in LR space with high-resolution (HR) texture details of Ref. Specifically, the proposed residual channel attention connection network (RCACN) can extract more complex features from the LR space. Moreover, an enhanced texture transformer is presented, which can search and transfer texture features more accurately from Ref. Extensive experiments have demonstrated that the proposed RCACSR is superior to the state-of-the-art approaches in the aspects of both quantitative and qualitative measurements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于参考的图像超分辨率残差通道注意连接网络
与单图像超分辨率(SISR)相比,基于参考的图像超分辨率(RefSR)利用额外的参考(Ref)来恢复更真实的纹理细节,获得更好的重建性能。最近的工作主要集中在将相关纹理特征从Ref转移到低分辨率(LR)图像上。然而,这些工作忽略了存在于LR空间中的高频信息,当给出不相关的Ref图像时,导致性能下降。为了解决这一问题,我们提出了一种基于参考图像超分辨率(racsr)的剩余通道注意连接网络,该网络融合了LR空间中有价值的高频信息和参考图像的高分辨率(HR)纹理细节。具体而言,所提出的剩余通道注意连接网络(racn)可以从LR空间中提取更复杂的特征。此外,提出了一种增强的纹理转换器,可以更准确地从参考文献中搜索和传递纹理特征。大量的实验表明,所提出的racsr在定量和定性测量方面都优于现有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on the Prediction Model of Key Personnel's Food Crime Based on Stacking Model Fusion A Multidimensional System Architecture Oriented to the Data Space of Manufacturing Enterprises Semi-Supervised Deep Clustering with Soft Membership Affinity Moving Target Shooting Control Policy Based on Deep Reinforcement Learning Prediction of ship fuel consumption based on Elastic network regression model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1