Predicting the Reliability Behavior of HPC Applications

Daniel Oliveira, Francis B. Moreira, P. Rech, P. Navaux
{"title":"Predicting the Reliability Behavior of HPC Applications","authors":"Daniel Oliveira, Francis B. Moreira, P. Rech, P. Navaux","doi":"10.1109/CAHPC.2018.8645856","DOIUrl":null,"url":null,"abstract":"The error rate of current High Performance Computing (HPC) systems is already in the order of one per dozens of hours. Understanding the reliability behavior of HPC applications will be required for the next generation of supercomputers. Using the reliability behavior one can select efficient mitigation techniques for the application and fine-tune parameters such as checkpoint frequency. In this paper, we investigate the application of a machine learning model to predict the reliability behavior of HPC applications. We inject faults in more than 30 HPC applications executing in the Intel Xeon Phi Knights Landing (KNL) and use profiling information to build a predictive model with Support Vector Machines (SVM). We show that the model can predict the Program Vulnerability Factor (PVF) with an average relative error of 7 % for certain classes of algorithm, such as linear algebra and sorting. The average relative error for all algorithm classes is 22 %. Such a fast and straightforward prediction model can be effective as a filter to select the most unreliable applications to perform an in-depth analysis.","PeriodicalId":307747,"journal":{"name":"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAHPC.2018.8645856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The error rate of current High Performance Computing (HPC) systems is already in the order of one per dozens of hours. Understanding the reliability behavior of HPC applications will be required for the next generation of supercomputers. Using the reliability behavior one can select efficient mitigation techniques for the application and fine-tune parameters such as checkpoint frequency. In this paper, we investigate the application of a machine learning model to predict the reliability behavior of HPC applications. We inject faults in more than 30 HPC applications executing in the Intel Xeon Phi Knights Landing (KNL) and use profiling information to build a predictive model with Support Vector Machines (SVM). We show that the model can predict the Program Vulnerability Factor (PVF) with an average relative error of 7 % for certain classes of algorithm, such as linear algebra and sorting. The average relative error for all algorithm classes is 22 %. Such a fast and straightforward prediction model can be effective as a filter to select the most unreliable applications to perform an in-depth analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测高性能计算应用的可靠性行为
目前高性能计算(HPC)系统的错误率已经达到每几十小时一次的水平。下一代超级计算机需要了解高性能计算应用程序的可靠性行为。使用可靠性行为,可以为应用程序选择有效的缓解技术,并微调参数,如检查点频率。在本文中,我们研究了应用机器学习模型来预测高性能计算应用程序的可靠性行为。我们在Intel Xeon Phi Knights Landing (KNL)上执行的30多个HPC应用程序中注入故障,并使用分析信息与支持向量机(SVM)建立预测模型。结果表明,对于线性代数和排序等算法,该模型能以7%的平均相对误差预测程序脆弱性因子(PVF)。所有算法类的平均相对误差为22%。这种快速而直接的预测模型可以有效地作为过滤器,选择最不可靠的应用程序来执行深入分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing Time Predictability Features of ARM Big. LITTLE Multicores Impacts of Three Soft-Fault Models on Hybrid Parallel Asynchronous Iterative Methods Predicting the Performance Impact of Increasing Memory Bandwidth for Scientific Workflows From Java to FPGA: An Experience with the Intel HARP System Copyright
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1