K. Kurashiki, T. Fukao, Kenji Ishiyama, Tsuyoshi Kamiya, N. Murakami
{"title":"Orchard traveling UGV using particle filter based localization and inverse optimal control","authors":"K. Kurashiki, T. Fukao, Kenji Ishiyama, Tsuyoshi Kamiya, N. Murakami","doi":"10.1109/SII.2010.5708297","DOIUrl":null,"url":null,"abstract":"The authors previously proposed an Unmanned Ground Vehicle (UGV) in an orchard as a base platform for autonomous robot systems for performing tasks such as monitoring, pesticide spraying, and harvesting. To control a UGV in a semi-natural environment, accurate self-localization and a control law that is robust under large disturbances from rough terrain are the first priorities. In this paper, a self-localization algorithm consisting of a 2D laser range finder and the particle filter is proposed. A robust nonlinear control law and a path regeneration algorithm that the authors proposed for underactuated mobile robots are combined with the localization method and applied to a drive-by-wire experimental vehicle. Excellent experimental results were obtained for traveling through a real orchard. The standard deviation of the control error in the lateral direction was less than 15cm.","PeriodicalId":334652,"journal":{"name":"2010 IEEE/SICE International Symposium on System Integration","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/SICE International Symposium on System Integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SII.2010.5708297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
The authors previously proposed an Unmanned Ground Vehicle (UGV) in an orchard as a base platform for autonomous robot systems for performing tasks such as monitoring, pesticide spraying, and harvesting. To control a UGV in a semi-natural environment, accurate self-localization and a control law that is robust under large disturbances from rough terrain are the first priorities. In this paper, a self-localization algorithm consisting of a 2D laser range finder and the particle filter is proposed. A robust nonlinear control law and a path regeneration algorithm that the authors proposed for underactuated mobile robots are combined with the localization method and applied to a drive-by-wire experimental vehicle. Excellent experimental results were obtained for traveling through a real orchard. The standard deviation of the control error in the lateral direction was less than 15cm.