Automatic Gait Gender Classification Using Convolutional Neural Networks

L. Srinivasan
{"title":"Automatic Gait Gender Classification Using Convolutional Neural Networks","authors":"L. Srinivasan","doi":"10.1145/3582177.3582184","DOIUrl":null,"url":null,"abstract":"In this study, automatic gait gender classification using convolutional neural networks includes three phases: i) human gait signature generation, ii) which convolves the gait energy images with filters for feature extraction and iii) classified using feed-forward convolutional neural networks. Analysed performance of Gabor and Log Gabor features using classification accuracy. The Log Gabor filter's accuracy was 92.11% for the Normal vs Normal dataset, 74.14% for the Normal vs Bag dataset, 46.55% for the Normal vs Coat dataset, 72.41% for the Normal vs Case dataset and whiles Gabor filter's accuracy was 75% for the Normal vs Normal dataset, 60.34% for the Normal vs Bag dataset 65.52% for the Normal vs Coat dataset and 55.17% for the Normal vs Case dataset.","PeriodicalId":170327,"journal":{"name":"Proceedings of the 2023 5th International Conference on Image Processing and Machine Vision","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 5th International Conference on Image Processing and Machine Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3582177.3582184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this study, automatic gait gender classification using convolutional neural networks includes three phases: i) human gait signature generation, ii) which convolves the gait energy images with filters for feature extraction and iii) classified using feed-forward convolutional neural networks. Analysed performance of Gabor and Log Gabor features using classification accuracy. The Log Gabor filter's accuracy was 92.11% for the Normal vs Normal dataset, 74.14% for the Normal vs Bag dataset, 46.55% for the Normal vs Coat dataset, 72.41% for the Normal vs Case dataset and whiles Gabor filter's accuracy was 75% for the Normal vs Normal dataset, 60.34% for the Normal vs Bag dataset 65.52% for the Normal vs Coat dataset and 55.17% for the Normal vs Case dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络的步态性别自动分类
在本研究中,基于卷积神经网络的步态性别自动分类包括三个阶段:1)人体步态特征生成;2)对步态能量图像进行卷积滤波进行特征提取;3)利用前馈卷积神经网络进行分类。利用分类精度分析了Gabor和Log Gabor特征的性能。Log Gabor过滤器对于Normal vs Normal数据集的准确率为92.11%,对于Normal vs Bag数据集的准确率为74.14%,对于Normal vs Coat数据集的准确率为46.55%,对于Normal vs Case数据集的准确率为72.41%,而对于Normal vs Normal数据集的准确率为75%,对于Normal vs Bag数据集的准确率为60.34%,对于Normal vs Coat数据集的准确率为65.52%,对于Normal vs Case数据集的准确率为55.17%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
VVC Coding Unit Partitioning Decision based on Naive Bayes Theory Human Motion Prediction based on IMUs and MetaFormer Semi-supervised Defect Segmentation with Uncertainty-aware Pseudo-labels from Multi-branch Network A Fast CU Partitioning Algorithm Based on Texture Characteristics for VVC Attention Based BiGRU-2DCNN with Hunger Game Search Technique for Low-Resource Document-Level Sentiment Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1