Using domain knowledge and bilingual resources for addressing community question answering for Arabic

Yassine El Adlouni, Imane Lahbari, H. Rodríguez, M. Meknassi, Said Ouatik El Alaoui, Noureddine Ennahnahi
{"title":"Using domain knowledge and bilingual resources for addressing community question answering for Arabic","authors":"Yassine El Adlouni, Imane Lahbari, H. Rodríguez, M. Meknassi, Said Ouatik El Alaoui, Noureddine Ennahnahi","doi":"10.1109/CIST.2016.7805073","DOIUrl":null,"url":null,"abstract":"This paper presents a description of the approach of the UPC-USMBA team for addressing Community Question Answering, for the Arabic language on the medical domain. Our approach for addressing the task is based on combining the use of original Arabic texts with English translations over which supervised Machine Learning techniques are applied. Our system perform on four steps: A preliminary step, aiming to collect domain resources, a learning step, for getting two models, one over Arabic texts and the other on English texts, a classification step, for applying them to the test datasets, and, finally a combination step over the results of the two classifiers.","PeriodicalId":196827,"journal":{"name":"2016 4th IEEE International Colloquium on Information Science and Technology (CiSt)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 4th IEEE International Colloquium on Information Science and Technology (CiSt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIST.2016.7805073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a description of the approach of the UPC-USMBA team for addressing Community Question Answering, for the Arabic language on the medical domain. Our approach for addressing the task is based on combining the use of original Arabic texts with English translations over which supervised Machine Learning techniques are applied. Our system perform on four steps: A preliminary step, aiming to collect domain resources, a learning step, for getting two models, one over Arabic texts and the other on English texts, a classification step, for applying them to the test datasets, and, finally a combination step over the results of the two classifiers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用领域知识和双语资源解决阿拉伯语社区问题
本文介绍了UPC-USMBA团队解决社区问答问题的方法,用于医学领域的阿拉伯语。我们解决该任务的方法是基于将原始阿拉伯语文本的使用与应用了监督机器学习技术的英语翻译相结合。我们的系统分四个步骤进行:一个初步步骤,旨在收集领域资源;一个学习步骤,用于获得两个模型,一个用于阿拉伯文本,另一个用于英语文本;一个分类步骤,用于将它们应用于测试数据集;最后一个组合步骤,用于两个分类器的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Semantically enhanced term frequency based on word embeddings for Arabic information retrieval Automatic generation of TestNG tests cases from UML sequence diagrams in Scrum process Coordination by sharing demand forecasts in a supply chain using game theoretic approach Robust approach for textured image clustering High speed efficient FPGA implementation of pipelined AES S-Box
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1