A study on IMU-Based Human Activity Recognition Using Deep Learning and Traditional Machine Learning

Chengli Hou
{"title":"A study on IMU-Based Human Activity Recognition Using Deep Learning and Traditional Machine Learning","authors":"Chengli Hou","doi":"10.1109/ICCCS49078.2020.9118506","DOIUrl":null,"url":null,"abstract":"Human Activity Recognition (HAR) has been an increasingly popular range to do researches which stems from the ubiquitous computing. And lately, identifying activities during daily life has become one of more and more challenges. Subsequently, more and more methods can be used in the recognition of human activities such as Support Vector Machine (SVM), Random Forests (RF) which are the representatives of Traditional Machine Learning (TML) and also some Deep Learning (DL) methods like Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN). However, neither TML nor DL is suitable for all kinds of situations and various datasets. As a result, we would like to explore more about such consequences. In this paper, we discover a discrepancy and phenomenon that different sizes of collected HAR datasets may produce influences on the effectiveness of traditional machine learning methods as well as the deep learning architectures. We conduct experiments on two kinds of different datasets USC-HAD and WISDM with the best accuracy nearly 90% in DL and 87% in TML. Due to the consequences of the experiments we give a conclusion on the individual heterogeneity problems of the HAR datasets–when dealing with the HAR datasets of small scales, the TML structures are more suitable. However, conversely, when the datasets have large amount of datasets. Specifically, DL approaches such as CNN and LSTM are more sensible choices.","PeriodicalId":105556,"journal":{"name":"2020 5th International Conference on Computer and Communication Systems (ICCCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Computer and Communication Systems (ICCCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCS49078.2020.9118506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Human Activity Recognition (HAR) has been an increasingly popular range to do researches which stems from the ubiquitous computing. And lately, identifying activities during daily life has become one of more and more challenges. Subsequently, more and more methods can be used in the recognition of human activities such as Support Vector Machine (SVM), Random Forests (RF) which are the representatives of Traditional Machine Learning (TML) and also some Deep Learning (DL) methods like Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN). However, neither TML nor DL is suitable for all kinds of situations and various datasets. As a result, we would like to explore more about such consequences. In this paper, we discover a discrepancy and phenomenon that different sizes of collected HAR datasets may produce influences on the effectiveness of traditional machine learning methods as well as the deep learning architectures. We conduct experiments on two kinds of different datasets USC-HAD and WISDM with the best accuracy nearly 90% in DL and 87% in TML. Due to the consequences of the experiments we give a conclusion on the individual heterogeneity problems of the HAR datasets–when dealing with the HAR datasets of small scales, the TML structures are more suitable. However, conversely, when the datasets have large amount of datasets. Specifically, DL approaches such as CNN and LSTM are more sensible choices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于imu的深度学习与传统机器学习的人体活动识别研究
人类活动识别(Human Activity Recognition, HAR)是普适计算(ubiquitous computing)发展的一个新兴研究领域。最近,识别日常生活中的活动已经成为越来越多的挑战之一。随后,越来越多的方法被用于人类活动的识别,如传统机器学习(TML)的代表——支持向量机(SVM)、随机森林(RF),以及一些深度学习(DL)的方法,如卷积神经网络(CNN)、循环神经网络(RNN)。然而,TML和DL都不适合所有情况和各种数据集。因此,我们希望更多地探讨这些后果。在本文中,我们发现了一个差异和现象,即不同规模的HAR数据集可能会对传统机器学习方法的有效性以及深度学习架构产生影响。我们在USC-HAD和WISDM两种不同的数据集上进行了实验,在DL和TML上的准确率分别接近90%和87%。根据实验结果,我们得出了HAR数据集的个体异质性问题——当处理小尺度HAR数据集时,TML结构更适合。然而,相反,当数据集有大量的数据集时。具体来说,像CNN和LSTM这样的深度学习方法是更明智的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Resource Dynamic Recombination and Its Technology Development of Space TT&C Equipment Automatic Arousal Detection Using Multi-model Deep Neural Network Internet Traffic Categories Demand Prediction to Support Dynamic QoS Research on Scatter Imaging Method for Electromagnetic Field Inverse Problem Based on Sparse Constraints Usage Intention of Internet of Vehicles Based on CAB Model: The Moderating Effect of Reference Groups
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1