Novel field weakening technique for Surface Mounted Permanent Magnet machine using Current Regulated Voltage Source Inverters

S. Atiq, T. Lipo, B. Kwon
{"title":"Novel field weakening technique for Surface Mounted Permanent Magnet machine using Current Regulated Voltage Source Inverters","authors":"S. Atiq, T. Lipo, B. Kwon","doi":"10.1109/SPEEDAM.2014.6871964","DOIUrl":null,"url":null,"abstract":"Field weakening control is a key technique for high speed operation of electrical machines. A novel Current Regulated Voltage Source Inverter (CRVSI) operation strategy is adopted in this paper to achieve high speed operation from Surface Mounted Permanent Magnet Synchronous Motor (SMPMSM). This strategy avoids any kind of previously proposed winding switching and achieves same benefits of high flux weakening. Machine operation is divided into two modes: two 3-phase CRVSI operation and three single phase CRVSI operation. During first mode of operation machine can be operated at maximum torque conditions as well as d-axes current control is applied for first stage of flux weakening. In second mode of operation, when machine reaches its constant power operation limit, CRVSIs operation is modified. Three 1-phase CRVSI are established such that machine operation reverts to achieve unity internal power factor at the elevated speed. Again d-axes current control is adopted to achieve second stage of flux weakening. Suitability of suggested current flow paths for the proposed topology is supported by inductance variation calculations. Furthermore effect of slot per pole per phase configuration on this flux weakling topology is discussed. Also constant power capability of the machine is examined for high speed operation. Initial experimental results are provided to validate the simulation results.","PeriodicalId":344918,"journal":{"name":"2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPEEDAM.2014.6871964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Field weakening control is a key technique for high speed operation of electrical machines. A novel Current Regulated Voltage Source Inverter (CRVSI) operation strategy is adopted in this paper to achieve high speed operation from Surface Mounted Permanent Magnet Synchronous Motor (SMPMSM). This strategy avoids any kind of previously proposed winding switching and achieves same benefits of high flux weakening. Machine operation is divided into two modes: two 3-phase CRVSI operation and three single phase CRVSI operation. During first mode of operation machine can be operated at maximum torque conditions as well as d-axes current control is applied for first stage of flux weakening. In second mode of operation, when machine reaches its constant power operation limit, CRVSIs operation is modified. Three 1-phase CRVSI are established such that machine operation reverts to achieve unity internal power factor at the elevated speed. Again d-axes current control is adopted to achieve second stage of flux weakening. Suitability of suggested current flow paths for the proposed topology is supported by inductance variation calculations. Furthermore effect of slot per pole per phase configuration on this flux weakling topology is discussed. Also constant power capability of the machine is examined for high speed operation. Initial experimental results are provided to validate the simulation results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于稳压电流源逆变器的表面贴装永磁电机弱磁场新技术
弱磁场控制是实现电机高速运行的关键技术。为了实现表面贴装式永磁同步电动机(SMPMSM)的高速运行,本文采用了一种新的电流稳压源逆变器(CRVSI)运行策略。该策略避免了之前提出的任何类型的绕组开关,并获得了高磁通弱化的相同好处。机器运行分为两种模式:两种三相CRVSI操作和三种单相CRVSI操作。在第一种操作方式下,机器可以在最大转矩条件下运行,并且在第一阶段磁链减弱时采用d轴电流控制。在第二种工作模式下,当机器达到恒功率工作极限时,修改crvsi的工作。建立了3个单相CRVSI,使机器运行恢复,在高速下实现统一的内部功率因数。再次采用d轴电流控制实现第二阶段磁链弱化。对所提出的拓扑结构所建议的电流路径的适用性由电感变化计算来支持。进一步讨论了每极每相槽结构对磁链弱拓扑结构的影响。并对机器的恒功率能力进行了高速运行测试。初步实验结果验证了仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A wireless controlled circuit for PV panel disconnection in case of fire Voltage stabilization in weak grids by high power charging stations Concepts for an integration of quick charging stations in weak power grids Some lab experiments on the control of an aircraft electrical landing gear Controller Hardware-In-the-Loop validation of a magnetic core saturation algorithm for fault ride-through evaluations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1