A reconfigurable spiking neural network digital ASIC simulation and implementation

Kevin Van Sickle, H. Abdel-Aty-Zohdy
{"title":"A reconfigurable spiking neural network digital ASIC simulation and implementation","authors":"Kevin Van Sickle, H. Abdel-Aty-Zohdy","doi":"10.1109/NAECON.2009.5426614","DOIUrl":null,"url":null,"abstract":"A reconfigurable spiking neural network is implemented in a 0.5µm CMOS digital tiny-chip. The connection weights are uploaded to registers on the ASIC. These weights are learned off-line, using combined simulated annealing and genetic algorithm. Large computational power and many simulations create small powerful networks that are adapted to interact with the environment. These configurations are swapped in and out of the ASIC to cope with varying situations and increase robustness. The network has been successfully tested with a simulated robot in a maze and can be extended for target recognition.","PeriodicalId":305765,"journal":{"name":"Proceedings of the IEEE 2009 National Aerospace & Electronics Conference (NAECON)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE 2009 National Aerospace & Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2009.5426614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

A reconfigurable spiking neural network is implemented in a 0.5µm CMOS digital tiny-chip. The connection weights are uploaded to registers on the ASIC. These weights are learned off-line, using combined simulated annealing and genetic algorithm. Large computational power and many simulations create small powerful networks that are adapted to interact with the environment. These configurations are swapped in and out of the ASIC to cope with varying situations and increase robustness. The network has been successfully tested with a simulated robot in a maze and can be extended for target recognition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种可重构尖峰神经网络数字ASIC仿真与实现
在0.5µm CMOS数字微芯片上实现了可重构的尖峰神经网络。连接权重被上传到ASIC的寄存器中。这些权重是离线学习,使用模拟退火和遗传算法相结合。巨大的计算能力和大量的模拟创造了适应与环境交互的小型强大网络。这些配置在ASIC内外交换,以应对不同的情况并增加鲁棒性。该网络已在一个模拟机器人的迷宫中成功地进行了测试,并且可以扩展到目标识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sub-mm wave imaging techniques for non-destructive aerospace materials evaluation Antenna placement for sensing buried objects by radio frequency lateral waves A flexible evaluation framework for collaborative layered sensing systems Modeling and design optimization of planar power transformer for aerospace application JPEG2000 code-stream interpreter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1