Predicting Domain Specific Personal Attitudes and Sentiment

Md. Enamul Haque, Eddie C. Ling, Aminul Islam, M. E. Tozal
{"title":"Predicting Domain Specific Personal Attitudes and Sentiment","authors":"Md. Enamul Haque, Eddie C. Ling, Aminul Islam, M. E. Tozal","doi":"10.1142/S1793351X20400073","DOIUrl":null,"url":null,"abstract":"Microblog activity logs are useful to determine user’s interest and sentiment towards specific and broader category of events such as natural disaster and national election. In this paper, we present a corpus model to show how personal attitudes can be predicted from social media or microblog activities for a specific domain of events such as natural disasters. More specifically, given a user’s tweet and an event, the model is used to predict whether the user will be willing to help or show a positive attitude towards that event or similar events in the future. We present a new dataset related to a specific natural disaster event, i.e. Hurricane Harvey, that distinguishes user’s tweets into positive and non-positive attitudes. We build Term Embeddings for Tweet (TEmT) to generate features to model personal attitudes for arbitrary user’s tweets. In addition, we present sentiment analysis on the same disaster event dataset using enhanced feature learning on TEmT generated features by applying Convolutional Neural Network (CNN). Finally, we evaluate the effectiveness of our method by employing multiple classification techniques and comparative methods on the newly created dataset.","PeriodicalId":217956,"journal":{"name":"Int. J. Semantic Comput.","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Semantic Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1793351X20400073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Microblog activity logs are useful to determine user’s interest and sentiment towards specific and broader category of events such as natural disaster and national election. In this paper, we present a corpus model to show how personal attitudes can be predicted from social media or microblog activities for a specific domain of events such as natural disasters. More specifically, given a user’s tweet and an event, the model is used to predict whether the user will be willing to help or show a positive attitude towards that event or similar events in the future. We present a new dataset related to a specific natural disaster event, i.e. Hurricane Harvey, that distinguishes user’s tweets into positive and non-positive attitudes. We build Term Embeddings for Tweet (TEmT) to generate features to model personal attitudes for arbitrary user’s tweets. In addition, we present sentiment analysis on the same disaster event dataset using enhanced feature learning on TEmT generated features by applying Convolutional Neural Network (CNN). Finally, we evaluate the effectiveness of our method by employing multiple classification techniques and comparative methods on the newly created dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测特定领域的个人态度和情绪
微博活动日志有助于确定用户对特定和更广泛类别的事件(如自然灾害和国家选举)的兴趣和情绪。在本文中,我们提出了一个语料库模型来展示如何从社交媒体或微博活动中预测个人态度,以应对特定领域的事件,如自然灾害。更具体地说,给定用户的tweet和事件,该模型用于预测用户是否愿意帮助或对该事件或未来类似事件表现出积极的态度。我们提出了一个与特定自然灾害事件(即飓风哈维)相关的新数据集,该数据集将用户的推文区分为积极和非积极态度。我们构建了Tweet的术语嵌入(TEmT)来生成特征,为任意用户的Tweet建模个人态度。此外,我们利用卷积神经网络(CNN)对TEmT生成的特征进行增强的特征学习,对同一灾难事件数据集进行情感分析。最后,我们通过对新创建的数据集使用多种分类技术和比较方法来评估我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Guest Editorial - Special Issue on IEEE AIKE 2022 TemporalDedup: Domain-Independent Deduplication of Redundant and Errant Temporal Data Knowledge Graph-Based Explainable Artificial Intelligence for Business Process Analysis Knowledge Graph-Based Integration of Autonomous Driving Datasets Confidence-Based Cheat Detection Through Constrained Order Inference of Temporal Sequences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1