Discovering Flow Anomalies: A SWEET Approach

James M. Kang, S. Shekhar, Christine Wennen, P. Novak
{"title":"Discovering Flow Anomalies: A SWEET Approach","authors":"James M. Kang, S. Shekhar, Christine Wennen, P. Novak","doi":"10.1109/ICDM.2008.117","DOIUrl":null,"url":null,"abstract":"Given a percentage-threshold and readings from a pair of consecutive upstream and downstream sensors, flow anomaly discovery identifies dominant time intervals where the fraction of time instants of significantly mis-matched sensor readings exceed the given percentage-threshold. Discovering flow anomalies (FA) is an important problem in environmental flow monitoring networks and early warning detection systems for water quality problems. However, mining FAs is computationally expensive because of the large (potentially infinite) number of time instants of measurement and potentially long delays due to stagnant (e.g. lakes) or slow moving (e.g. wetland) water bodies between consecutive sensors. Traditional outlier detection methods (e.g. t-test) are suited for detecting transient FAs (i.e., time instants of significant mis-matches across consecutive sensors) and cannot detect persistent FAs (i.e., long variable time-windows with a high fraction of time instant transient FAs) due to a lack of a pre-defined window size. In contrast, we propose a Smart Window Enumeration and Evaluation of persistence-Thresholds (SWEET) method to efficiently explore the search space of all possible window lengths. Computation overhead is brought down significantly by restricting the start and end points of a window to coincide with transient FAs, using a smart counter and efficient pruning techniques. Experimental evaluation using a real dataset shows our proposed approach outperforms Nainodotve alternatives.","PeriodicalId":252958,"journal":{"name":"2008 Eighth IEEE International Conference on Data Mining","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Eighth IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2008.117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Given a percentage-threshold and readings from a pair of consecutive upstream and downstream sensors, flow anomaly discovery identifies dominant time intervals where the fraction of time instants of significantly mis-matched sensor readings exceed the given percentage-threshold. Discovering flow anomalies (FA) is an important problem in environmental flow monitoring networks and early warning detection systems for water quality problems. However, mining FAs is computationally expensive because of the large (potentially infinite) number of time instants of measurement and potentially long delays due to stagnant (e.g. lakes) or slow moving (e.g. wetland) water bodies between consecutive sensors. Traditional outlier detection methods (e.g. t-test) are suited for detecting transient FAs (i.e., time instants of significant mis-matches across consecutive sensors) and cannot detect persistent FAs (i.e., long variable time-windows with a high fraction of time instant transient FAs) due to a lack of a pre-defined window size. In contrast, we propose a Smart Window Enumeration and Evaluation of persistence-Thresholds (SWEET) method to efficiently explore the search space of all possible window lengths. Computation overhead is brought down significantly by restricting the start and end points of a window to coincide with transient FAs, using a smart counter and efficient pruning techniques. Experimental evaluation using a real dataset shows our proposed approach outperforms Nainodotve alternatives.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
发现流动异常:一种SWEET方法
给定一个百分比阈值和一对连续的上游和下游传感器的读数,流量异常发现识别出明显不匹配传感器读数的时间瞬间分数超过给定百分比阈值的主要时间间隔。发现流量异常是环境流量监测网络和水质问题预警检测系统中的一个重要问题。然而,由于连续传感器之间的停滞(例如湖泊)或缓慢移动(例如湿地)水体可能造成长时间延迟,因此挖掘FAs的计算成本很高。传统的离群值检测方法(如t检验)适用于检测瞬态FAs(即,跨连续传感器显著不匹配的时间瞬间),但由于缺乏预定义的窗口大小,无法检测持续FAs(即,具有高比例的时间瞬间瞬态FAs的长可变时间窗口)。相比之下,我们提出了一种智能窗口枚举和持续阈值评估(SWEET)方法来有效地探索所有可能窗口长度的搜索空间。通过使用智能计数器和有效的剪枝技术,限制窗口的起始点和结束点与瞬态fa重合,大大降低了计算开销。使用真实数据集的实验评估表明,我们提出的方法优于奈诺多夫替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SeqStream: Mining Closed Sequential Patterns over Stream Sliding Windows Support Vector Regression for Censored Data (SVRc): A Novel Tool for Survival Analysis A Probability Model for Projective Clustering on High Dimensional Data Text Cube: Computing IR Measures for Multidimensional Text Database Analysis A Hierarchical Algorithm for Clustering Uncertain Data via an Information-Theoretic Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1