{"title":"Optimizing Synchronous Handover in Cloud RAN","authors":"T. Kolding, L. Chavarria, K. Pedersen","doi":"10.1109/VTCFall.2017.8288048","DOIUrl":null,"url":null,"abstract":"Radio networks are at the brink of a transformation in order to meet new requirements for high data and device densities expected for the Internet-of-Things (IoT) era. Cloud technology is positioned to be a key element in building effective 5G radio networks, so-called Cloud RANs. In this paper, we focus on Cloud RAN architectural benefits in relation to synchronous handovers without random access; an important enabler for ultra-low latency and ultra-high reliability services for high mobility IoT applications. We analyze the performance of Cloud RAN architectures and introduce a new concept for reducing the handover preparation time. Compared to today's distributed RAN architectures, we show a handover preparation time reduction of up to 60% for a wide range of interface and processing latency assumptions.","PeriodicalId":375803,"journal":{"name":"2017 IEEE 86th Vehicular Technology Conference (VTC-Fall)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 86th Vehicular Technology Conference (VTC-Fall)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTCFall.2017.8288048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Radio networks are at the brink of a transformation in order to meet new requirements for high data and device densities expected for the Internet-of-Things (IoT) era. Cloud technology is positioned to be a key element in building effective 5G radio networks, so-called Cloud RANs. In this paper, we focus on Cloud RAN architectural benefits in relation to synchronous handovers without random access; an important enabler for ultra-low latency and ultra-high reliability services for high mobility IoT applications. We analyze the performance of Cloud RAN architectures and introduce a new concept for reducing the handover preparation time. Compared to today's distributed RAN architectures, we show a handover preparation time reduction of up to 60% for a wide range of interface and processing latency assumptions.