Classification-driven object-based image retrieval

Linhui Jia, L. Kitchen
{"title":"Classification-driven object-based image retrieval","authors":"Linhui Jia, L. Kitchen","doi":"10.1109/MMCS.1999.779271","DOIUrl":null,"url":null,"abstract":"This paper describes an approach for object-based image retrieval based on classes of objects in images. In this approach, contours of objects are extracted from images and are represented under a scheme which satisfies scale, rotation and translation invariance. Classifier learning techniques are used to classify objects in images into different classes. Image similarity calculation is performed based on class information of objects. Experimental results show that the method is effective and efficient.","PeriodicalId":408680,"journal":{"name":"Proceedings IEEE International Conference on Multimedia Computing and Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Conference on Multimedia Computing and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMCS.1999.779271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper describes an approach for object-based image retrieval based on classes of objects in images. In this approach, contours of objects are extracted from images and are represented under a scheme which satisfies scale, rotation and translation invariance. Classifier learning techniques are used to classify objects in images into different classes. Image similarity calculation is performed based on class information of objects. Experimental results show that the method is effective and efficient.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分类驱动的基于对象的图像检索
本文描述了一种基于图像中物体类别的基于物体的图像检索方法。在该方法中,从图像中提取物体的轮廓,并在满足比例、旋转和平移不变性的方案下表示。分类器学习技术用于将图像中的对象划分为不同的类别。基于物体的类信息进行图像相似度计算。实验结果表明,该方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A fast H.261 software codec for high quality videoconferencing on PCs Virtual European School-VES An adaptive transport service for multimedia streams Virtual social clubs: meeting places for the Internet community An investigation of audio-visual speech recognition as applied to multimedia speech therapy applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1