Specifying algorithm uncertainties in satellite-derived PAR products

R. Frouin, D. Ramon, D. Jolivet, M. Compiègne
{"title":"Specifying algorithm uncertainties in satellite-derived PAR products","authors":"R. Frouin, D. Ramon, D. Jolivet, M. Compiègne","doi":"10.1117/12.2501681","DOIUrl":null,"url":null,"abstract":"Satellite ocean-color project offices routinely generate Level 2 and Level 3 daily Photo-synthetically Available Radiation (PAR) products. Accuracy is currently evaluated against in-situ measurements from buoys and fixed platforms at a few locations, but specifying algorithm (and other) uncertainties on a pixel-by-pixel basis is needed to assess product quality. Expressing uncertainties requires modeling the measurement, identifying all possible error sources (e.g., noise in the input variables, imperfect/incomplete mathematical model), and determining the combined uncertainty. In the present study, algorithm uncertainties associated with PAR products are considered, i.e., those due to model approximations and parameter errors (e.g., decoupling effects of clouds and clear atmosphere, neglecting diurnal variability of clouds, using aerosol climatology) assuming that the input variables (TOA reflectance at wavelengths in the PAR spectral range) are known perfectly. A procedure is provided to estimate and provide, for each pixel of a product, this uncertainty component of the total uncertainty budget, which is expected to dominate. The bias and standard deviation of the daily PAR estimates are calculated as a function of clear sky PAR and cloud factor (i.e., the effect of clouds on daily PAR). The uncertainty characterization is accomplished using an extended simulation dataset covering the 2003–2012 time period using hourly MERRA-2 input data. The large number of data points allows one to sample well atmospheric variability and in particular many variations of daytime cloudiness, for all latitudes. Selected maps of global daily and monthly PAR and associated uncertainties (bias, standard deviation), obtained from MERIS data, are analyzed. Comparisons with match-up data at the COVE calibration/evaluation site reveal that experimental uncertainties are similar to the theoretical uncertainties obtained from simulated data.","PeriodicalId":370971,"journal":{"name":"Asia-Pacific Remote Sensing","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2501681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Satellite ocean-color project offices routinely generate Level 2 and Level 3 daily Photo-synthetically Available Radiation (PAR) products. Accuracy is currently evaluated against in-situ measurements from buoys and fixed platforms at a few locations, but specifying algorithm (and other) uncertainties on a pixel-by-pixel basis is needed to assess product quality. Expressing uncertainties requires modeling the measurement, identifying all possible error sources (e.g., noise in the input variables, imperfect/incomplete mathematical model), and determining the combined uncertainty. In the present study, algorithm uncertainties associated with PAR products are considered, i.e., those due to model approximations and parameter errors (e.g., decoupling effects of clouds and clear atmosphere, neglecting diurnal variability of clouds, using aerosol climatology) assuming that the input variables (TOA reflectance at wavelengths in the PAR spectral range) are known perfectly. A procedure is provided to estimate and provide, for each pixel of a product, this uncertainty component of the total uncertainty budget, which is expected to dominate. The bias and standard deviation of the daily PAR estimates are calculated as a function of clear sky PAR and cloud factor (i.e., the effect of clouds on daily PAR). The uncertainty characterization is accomplished using an extended simulation dataset covering the 2003–2012 time period using hourly MERRA-2 input data. The large number of data points allows one to sample well atmospheric variability and in particular many variations of daytime cloudiness, for all latitudes. Selected maps of global daily and monthly PAR and associated uncertainties (bias, standard deviation), obtained from MERIS data, are analyzed. Comparisons with match-up data at the COVE calibration/evaluation site reveal that experimental uncertainties are similar to the theoretical uncertainties obtained from simulated data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
指定卫星衍生PAR产品中的算法不确定性
卫星海洋色项目办公室定期生成2级和3级每日光合有效辐射(PAR)产品。目前,通过浮标和固定平台在几个地点的原位测量来评估准确性,但需要在逐像素的基础上指定算法(和其他)不确定性来评估产品质量。表达不确定性需要对测量进行建模,识别所有可能的误差源(例如,输入变量中的噪声,不完善/不完整的数学模型),并确定组合的不确定性。在本研究中,考虑了与PAR产品相关的算法不确定性,即由于模式近似和参数误差(例如,云和晴朗大气的解耦效应,忽略云的日变率,使用气溶胶气候学)造成的不确定性,假设输入变量(PAR光谱范围内波长的TOA反射率)是完全已知的。提供了一个程序来估计和提供,对于产品的每个像素,总不确定预算的不确定成分,预计它将占主导地位。每日PAR估计的偏差和标准差是作为晴空PAR和云因子(即云对每日PAR的影响)的函数计算的。利用扩展的模拟数据集,利用每小时MERRA-2输入数据,覆盖2003-2012年期间,完成了不确定性表征。大量的数据点使人们能够很好地对所有纬度的大气变异性,特别是白天云量的许多变化进行采样。本文分析了从MERIS数据获得的全球每日和每月PAR和相关不确定性(偏差、标准差)的选定地图。与COVE校准/评估现场匹配数据的比较表明,实验不确定度与模拟数据获得的理论不确定度相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improvement of CSF based on a wide range of urban complex scenes NOAA-20 VIIRS on-orbit performance, data quality, and operational Cal/Val support Mapping of debris-covered glaciers in Astor basin: an object-based image analysis approach Impacts of the Kuroshio intrusion entering the Luzon Strait on the local atmosphere by satellite observations Satellite-based seagrass mapping in Korean coastal waters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1