Real-Time Lightweight CNN for Detecting Road Object of Various Size

Byeonghak Lim, Sean Bin Yang, Hakil Kim
{"title":"Real-Time Lightweight CNN for Detecting Road Object of Various Size","authors":"Byeonghak Lim, Sean Bin Yang, Hakil Kim","doi":"10.1109/MIPR.2018.00044","DOIUrl":null,"url":null,"abstract":"This paper proposed a novel lightweight convolutional neural network suitable for road object detection which not only for small objects, but for large objects. The proposed network outperformed detection performance of existing convolutional neural networks on KITTI datasets and satisfied real-time processing speed of 10ms on PC and 65ms on NVIDIA TX2. The model is suitable for running in an embedded environment with only 3-million weight parameters","PeriodicalId":320000,"journal":{"name":"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIPR.2018.00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper proposed a novel lightweight convolutional neural network suitable for road object detection which not only for small objects, but for large objects. The proposed network outperformed detection performance of existing convolutional neural networks on KITTI datasets and satisfied real-time processing speed of 10ms on PC and 65ms on NVIDIA TX2. The model is suitable for running in an embedded environment with only 3-million weight parameters
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于检测各种尺寸道路物体的实时轻量级CNN
本文提出了一种适用于道路物体检测的新型轻量级卷积神经网络,既能检测小物体,又能检测大物体。该网络优于现有卷积神经网络在KITTI数据集上的检测性能,满足PC上10ms和NVIDIA TX2上65ms的实时处理速度。该模型适合在只有300万个权重参数的嵌入式环境中运行
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joint Estimation of Age and Gender from Unconstrained Face Images Using Lightweight Multi-Task CNN for Mobile Applications A Multimodal Approach to Predict Social Media Popularity Ownership Identification and Signaling of Multimedia Content Components Deep Learning of Path-Based Tree Classifiers for Large-Scale Plant Species Identification Understanding User Profiles on Social Media for Fake News Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1