Neural network-based accelerators for transcendental function approximation

Schuyler Eldridge, F. Raudies, D. Zou, A. Joshi
{"title":"Neural network-based accelerators for transcendental function approximation","authors":"Schuyler Eldridge, F. Raudies, D. Zou, A. Joshi","doi":"10.1145/2591513.2591534","DOIUrl":null,"url":null,"abstract":"The general-purpose approximate nature of neural network (NN) based accelerators has the potential to sustain the historic energy and performance improvements of computing systems. We propose the use of NN-based accelerators to approximate mathematical functions in the GNU C Library (glibc) that commonly occur in application benchmarks. Using our NN-based approach to approximate cos, exp, log, pow, and sin we achieve an average energy-delay product (EDP) that is 68x lower than that of traditional glibc execution. In applications, our NN-based approach has an EDP 78% of that of traditional execution at the cost of an average mean squared error (MSE) of 1.56.","PeriodicalId":272619,"journal":{"name":"ACM Great Lakes Symposium on VLSI","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2591513.2591534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

The general-purpose approximate nature of neural network (NN) based accelerators has the potential to sustain the historic energy and performance improvements of computing systems. We propose the use of NN-based accelerators to approximate mathematical functions in the GNU C Library (glibc) that commonly occur in application benchmarks. Using our NN-based approach to approximate cos, exp, log, pow, and sin we achieve an average energy-delay product (EDP) that is 68x lower than that of traditional glibc execution. In applications, our NN-based approach has an EDP 78% of that of traditional execution at the cost of an average mean squared error (MSE) of 1.56.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的超越函数逼近加速器
基于神经网络(NN)的加速器的通用近似性质具有维持计算系统历史能量和性能改进的潜力。我们建议使用基于神经网络的加速器来近似GNU C库(glibc)中的数学函数,这些函数通常出现在应用程序基准测试中。使用我们基于神经网络的方法来近似cos、exp、log、pow和sin,我们实现了平均能量延迟积(EDP),比传统的glibc执行低68倍。在应用中,我们基于神经网络的方法的EDP是传统执行方法的78%,平均均方误差(MSE)为1.56。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MB-FICA: multi-bit fault injection and coverage analysis A complete electronic network interface architecture for global contention-free communication over emerging optical networks-on-chip A design approach to automatically generate on-chip monitors during high-level synthesis of hardware accelerator Trade-off between energy and quality of service through dynamic operand truncation and fusion New 4T-based DRAM cell designs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1