{"title":"Signal integrity analysis of through-silicon via based 3D integrated circuit","authors":"E. Li, E. Liu","doi":"10.1109/ISSSE.2010.5606942","DOIUrl":null,"url":null,"abstract":"This paper presents an accurate compact scalable RLCG (Resistance, Inductance, Capacitance, and Conductance) model for electrical modeling of through-silicon vias in 3D IC packaging. Closed-form formulas for R and L are derived by full-wave approach, while C and G are taken from static solutions. The equivalent circuit model can capture almost all the parasitic effects, such as skin, proximity and MOS capacitance effect of through-silicon vias and the effect of lossy silicon. Therefore, it yields accurate results comparable to the full-wave solver.","PeriodicalId":211786,"journal":{"name":"2010 International Symposium on Signals, Systems and Electronics","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Symposium on Signals, Systems and Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSSE.2010.5606942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper presents an accurate compact scalable RLCG (Resistance, Inductance, Capacitance, and Conductance) model for electrical modeling of through-silicon vias in 3D IC packaging. Closed-form formulas for R and L are derived by full-wave approach, while C and G are taken from static solutions. The equivalent circuit model can capture almost all the parasitic effects, such as skin, proximity and MOS capacitance effect of through-silicon vias and the effect of lossy silicon. Therefore, it yields accurate results comparable to the full-wave solver.