{"title":"ATP-sensitive K(+)-channel run-down is Mg2+ dependent.","authors":"R Z Kozlowski, M L Ashford","doi":"10.1098/rspb.1990.0044","DOIUrl":null,"url":null,"abstract":"<p><p>ATP-sensitive K(+)-channel currents were recorded from isolated membrane patches and voltage-clamped CRI-G1 insulin-secreting cells. Internal Mg2+ ions inhibited ATP-K+ channels by a voltage-dependent block of the channel current and decrease of open-state probability. The run-down of ATP-K+ channel activity was also shown to be [Mg2+]i dependent, being almost abolished in Mg2(+)-free conditions. Substitution of Mn2+ for Mg2+ did not prevent run-down, nor did the presence of phosphate-donating nucleotides, a protease or phosphatase inhibitor or replacement of Cl- by gluconate.</p>","PeriodicalId":54561,"journal":{"name":"Proceedings of the Royal Society of London Series B-Containing Papers of Abiological Character","volume":"240 1298","pages":"397-410"},"PeriodicalIF":0.0000,"publicationDate":"1990-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1098/rspb.1990.0044","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of London Series B-Containing Papers of Abiological Character","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspb.1990.0044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59
Abstract
ATP-sensitive K(+)-channel currents were recorded from isolated membrane patches and voltage-clamped CRI-G1 insulin-secreting cells. Internal Mg2+ ions inhibited ATP-K+ channels by a voltage-dependent block of the channel current and decrease of open-state probability. The run-down of ATP-K+ channel activity was also shown to be [Mg2+]i dependent, being almost abolished in Mg2(+)-free conditions. Substitution of Mn2+ for Mg2+ did not prevent run-down, nor did the presence of phosphate-donating nucleotides, a protease or phosphatase inhibitor or replacement of Cl- by gluconate.