Inference with Deep Gaussian Process State Space Models

Yuhao Liu, Marzieh Ajirak, P. Djurić
{"title":"Inference with Deep Gaussian Process State Space Models","authors":"Yuhao Liu, Marzieh Ajirak, P. Djurić","doi":"10.23919/eusipco55093.2022.9909843","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of sequential processing of observations modeled by deep Gaussian process state space models. First, we introduce the model where the Gaus-sian processes are based on random features and where both the transition and observation functions of the models are unknown. Then we propose a method that can estimate the unknowns of the model. The method allows for incremental learning of the system without requiring all the historical information. We also propose an ensemble version of the method, where each member of the ensemble has its own set of features. We show with computer simulations that the method can track the latent states up to scale and rotation.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we address the problem of sequential processing of observations modeled by deep Gaussian process state space models. First, we introduce the model where the Gaus-sian processes are based on random features and where both the transition and observation functions of the models are unknown. Then we propose a method that can estimate the unknowns of the model. The method allows for incremental learning of the system without requiring all the historical information. We also propose an ensemble version of the method, where each member of the ensemble has its own set of features. We show with computer simulations that the method can track the latent states up to scale and rotation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度高斯过程状态空间模型的推理
本文研究了用深度高斯过程状态空间模型对观测值进行顺序处理的问题。首先,我们介绍了一个模型,其中高斯过程是基于随机特征的,模型的过渡函数和观测函数都是未知的。然后,我们提出了一种可以估计模型未知数的方法。该方法允许在不需要所有历史信息的情况下对系统进行增量学习。我们还提出了该方法的集成版本,其中集成的每个成员都有自己的一组特征。我们通过计算机模拟表明,该方法可以跟踪潜在状态的大小和旋转。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing Bias in Face Image Quality Assessment Electrically evoked auditory steady state response detection in cochlear implant recipients using a system identification approach Uncovering cortical layers with multi-exponential analysis: a region of interest study Phaseless Passive Synthetic Aperture Imaging with Regularized Wirtinger Flow The faster proximal algorithm, the better unfolded deep learning architecture ? The study case of image denoising
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1