Using Self-Organizing Maps for Fraud Prediction at Online Auction Sites

Vinicius Almendra, D. Enachescu
{"title":"Using Self-Organizing Maps for Fraud Prediction at Online Auction Sites","authors":"Vinicius Almendra, D. Enachescu","doi":"10.1109/SYNASC.2013.44","DOIUrl":null,"url":null,"abstract":"Online auction sites have to deal with a enormous amount of product listings, of which a fraction is fraudulent. Although small in proportion, fraudulent listings are costly for site operators, buyers and legitimate sellers. Fraud prediction in this scenario can benefit significantly from machine learning techniques, although interpretability of model predictions is a concern. In this work we extend an unsupervised learning technique -- Self-Organizing Maps -- to use labeled data for binary classification under a constraint on the proportion of false positives. The resulting technique was applied to the prediction of non-delivery fraud, achieving good results while being easier to interpret.","PeriodicalId":293085,"journal":{"name":"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":"03 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2013.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Online auction sites have to deal with a enormous amount of product listings, of which a fraction is fraudulent. Although small in proportion, fraudulent listings are costly for site operators, buyers and legitimate sellers. Fraud prediction in this scenario can benefit significantly from machine learning techniques, although interpretability of model predictions is a concern. In this work we extend an unsupervised learning technique -- Self-Organizing Maps -- to use labeled data for binary classification under a constraint on the proportion of false positives. The resulting technique was applied to the prediction of non-delivery fraud, achieving good results while being easier to interpret.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用自组织地图进行在线拍卖网站欺诈预测
在线拍卖网站必须处理大量的产品列表,其中一小部分是欺诈性的。尽管欺诈性信息所占比例很小,但对网站运营商、买家和合法卖家来说,代价高昂。在这种情况下,欺诈预测可以从机器学习技术中获益良多,尽管模型预测的可解释性是一个问题。在这项工作中,我们扩展了一种无监督学习技术——自组织地图——在对误报比例的约束下,使用标记数据进行二元分类。所得到的技术被应用于未交付欺诈的预测,取得了良好的结果,同时更容易解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
From the Desktop to the Multi-clouds: The Case of ModelioSaaS Bound Propagation for Arithmetic Reasoning in Vampire Dependence of the Oscillatory Movements of an Unmanned Aerial Vehicle on the Forward Velocity Cph CT Toolbox: CT Reconstruction for Education, Research and Industrial Applications Non-interleaving Operational Semantics for Geographically Replicated Databases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1