Simultaneous estimation of 3D shape and motion of objects by computer vision

J. Schick, E. Dickmanns
{"title":"Simultaneous estimation of 3D shape and motion of objects by computer vision","authors":"J. Schick, E. Dickmanns","doi":"10.1109/WVM.1991.212799","DOIUrl":null,"url":null,"abstract":"A recursive estimation method based on the 4D-approach to real-time computer vision for simultaneously determining both 3D shape parameters and motion state of objects is discussed. The recognition processes exploit structurally given shape models and motion models given by difference-equations. This allows to confine the image analysis to feature evaluation of the last frame of the sequence only; no differencing between images has to be done, yet the spatial motion components (satisfying planar motion constraints) are recovered directly without inverting the perspective projection equations of the imaging process explicitly. Object recognition has been confined to a well structured, but otherwise general dynamic scene for the beginning: road traffic with a limited class of vehicles.<<ETX>>","PeriodicalId":208481,"journal":{"name":"Proceedings of the IEEE Workshop on Visual Motion","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Workshop on Visual Motion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WVM.1991.212799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

A recursive estimation method based on the 4D-approach to real-time computer vision for simultaneously determining both 3D shape parameters and motion state of objects is discussed. The recognition processes exploit structurally given shape models and motion models given by difference-equations. This allows to confine the image analysis to feature evaluation of the last frame of the sequence only; no differencing between images has to be done, yet the spatial motion components (satisfying planar motion constraints) are recovered directly without inverting the perspective projection equations of the imaging process explicitly. Object recognition has been confined to a well structured, but otherwise general dynamic scene for the beginning: road traffic with a limited class of vehicles.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用计算机视觉同时估计物体的三维形状和运动
讨论了一种基于4d方法的实时计算机视觉递归估计方法,用于同时确定物体的三维形状参数和运动状态。识别过程利用结构给定的形状模型和由差分方程给出的运动模型。这允许将图像分析限制为仅对序列的最后一帧进行特征评估;图像之间没有差异,但空间运动分量(满足平面运动约束)可以直接恢复,而无需显式反转成像过程的透视投影方程。物体识别已经被限制在一个结构良好,但一般动态场景开始:道路交通与有限类别的车辆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Incremental estimation of image-flow using a Kalman filter Structure and motion in two dimensions from multiple images: a least squares approach An adaptive multi-scale approach for estimating optical flow: computational theory and physiological implementation Stability of phase information Motion tracking on the spatiotemporal surface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1