{"title":"Uniform Convergence Rates of Kernel Estimators with Heterogenous, Dependent Data","authors":"Dennis Kristensen","doi":"10.2139/ssrn.1144782","DOIUrl":null,"url":null,"abstract":"The main uniform convergence results of Hansen (2008, Econometric Theory 24, 726–748) are generalized in two directions: Data are allowed to (a) be heterogeneously dependent and (b) depend on a (possibly unbounded) parameter. These results are useful in semiparametric estimation problems involving time-inhomogeneous models and/or sampling of continuous-time processes. The usefulness of these results is demonstrated by two applications: kernel regression estimation of a time-varying AR(1) model and the kernel density estimation of a Markov chain that has not been initialized at its stationary distribution.","PeriodicalId":384078,"journal":{"name":"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1144782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31
Abstract
The main uniform convergence results of Hansen (2008, Econometric Theory 24, 726–748) are generalized in two directions: Data are allowed to (a) be heterogeneously dependent and (b) depend on a (possibly unbounded) parameter. These results are useful in semiparametric estimation problems involving time-inhomogeneous models and/or sampling of continuous-time processes. The usefulness of these results is demonstrated by two applications: kernel regression estimation of a time-varying AR(1) model and the kernel density estimation of a Markov chain that has not been initialized at its stationary distribution.