Incremental Learning By Decomposition

A. Bouchachia
{"title":"Incremental Learning By Decomposition","authors":"A. Bouchachia","doi":"10.1109/ICMLA.2006.28","DOIUrl":null,"url":null,"abstract":"Adaptivity in neural networks aims at equipping learning algorithms with the ability to self-update as new training data becomes available. In many application, data arrives over long periods of time, hence the traditional one-shot training phase cannot be applied. The most appropriate training methodology in such circumstances is incremental learning (IL). The present paper introduces a new IL algorithm dedicated to classification problems. The basic idea is to incrementally generate prototyped categories which are then linked to their corresponding classes. Numerical simulations show the performance of the proposed algorithm","PeriodicalId":297071,"journal":{"name":"2006 5th International Conference on Machine Learning and Applications (ICMLA'06)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 5th International Conference on Machine Learning and Applications (ICMLA'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2006.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Adaptivity in neural networks aims at equipping learning algorithms with the ability to self-update as new training data becomes available. In many application, data arrives over long periods of time, hence the traditional one-shot training phase cannot be applied. The most appropriate training methodology in such circumstances is incremental learning (IL). The present paper introduces a new IL algorithm dedicated to classification problems. The basic idea is to incrementally generate prototyped categories which are then linked to their corresponding classes. Numerical simulations show the performance of the proposed algorithm
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分解式增量学习
神经网络的自适应性旨在使学习算法在新的训练数据可用时具有自我更新的能力。在许多应用中,数据需要很长时间才能到达,因此传统的一次性训练阶段无法应用。在这种情况下,最合适的训练方法是增量学习(IL)。本文介绍了一种新的用于分类问题的IL算法。基本思想是增量地生成原型类别,然后将其链接到相应的类。数值仿真结果表明了该算法的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Efficient Heuristic for Discovering Multiple Ill-Defined Attributes in Datasets Robust Model Selection Using Cross Validation: A Simple Iterative Technique for Developing Robust Gene Signatures in Biomedical Genomics Applications Detecting Web Content Function Using Generalized Hidden Markov Model Naive Bayes Classification Given Probability Estimation Trees A New Machine Learning Technique Based on Straight Line Segments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1