Using IMM adaptive estimator in GPS positioning

Genshe Chen, M. Harigae
{"title":"Using IMM adaptive estimator in GPS positioning","authors":"Genshe Chen, M. Harigae","doi":"10.1109/SICE.2001.977810","DOIUrl":null,"url":null,"abstract":"The interacting multiple model (IMM) adaptive estimator is used as a means of improving the GPS receiver positioning performance in various dynamic conditions. Each Kalman filter is considered to be locally valid, applicable over a region of the working space defined by the filter conditioning value. Three dynamic models correspond to the stationary, low dynamic, and high dynamic working space. A numerical study is used to demonstrate the viability of the concept. In comparison with previous methodology, the new, IMM based method leads to an improvement in GPS position accuracy.","PeriodicalId":415046,"journal":{"name":"SICE 2001. Proceedings of the 40th SICE Annual Conference. International Session Papers (IEEE Cat. No.01TH8603)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SICE 2001. Proceedings of the 40th SICE Annual Conference. International Session Papers (IEEE Cat. No.01TH8603)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SICE.2001.977810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

The interacting multiple model (IMM) adaptive estimator is used as a means of improving the GPS receiver positioning performance in various dynamic conditions. Each Kalman filter is considered to be locally valid, applicable over a region of the working space defined by the filter conditioning value. Three dynamic models correspond to the stationary, low dynamic, and high dynamic working space. A numerical study is used to demonstrate the viability of the concept. In comparison with previous methodology, the new, IMM based method leads to an improvement in GPS position accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IMM自适应估计在GPS定位中的应用
采用交互多模型(IMM)自适应估计器提高GPS接收机在各种动态条件下的定位性能。每个卡尔曼滤波器被认为是局部有效的,适用于由滤波器条件值定义的工作空间的一个区域。三种动态模型分别对应静止、低动态和高动态的工作空间。数值研究证明了这一概念的可行性。与以前的方法相比,新的基于IMM的方法提高了GPS定位精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An approximation to EMI noise problem to design an appropriate EMI filter for induction motor control systems Two kinds of sensor data fusion in target tracking Robust control of feedback linearizable system with the parameter uncertainty and input constraint Self-tuning fuzzy logic controller for direct torque control of slip energy recovery system The frequency-domain RLS algorithm with incremental hopping-index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1