{"title":"Mapping Irregular Computations for Molecular Docking to the SX-Aurora TSUBASA Vector Engine","authors":"Leonardo Solis-Vasquez, E. Focht, Andreas Koch","doi":"10.1109/IA354616.2021.00008","DOIUrl":null,"url":null,"abstract":"Molecular docking is a key method in computer-aided drug design, where the rapid identification of drug candidates is crucial for combating diseases. AutoDock is a widely-used molecular docking program, having an irregular structure characterized by a divergent control flow and compute-intensive calculations. This work investigates porting AutoDock to the SX-Aurora TSUBASA vector engine and evaluates the achievable performance on a number of real-world input compounds. In particular, we discuss the platform-specific coding styles required to handle the high degree of irregularity in both local-search methods employed by AutoDock. These Solis-Wets and ADADELTA methods take up a large part of the total computation time. Based on our experiments, we achieved runtimes on the SX-Aurora TSUBASA VE 20B that are on average 3 x faster than on modern dual-socket 64-core CPU nodes. Our solution is competitive with V100 GPUs, even though these already use newer chip fabrication technology (12 nm vs. 16 nm on the VE 20B).","PeriodicalId":415158,"journal":{"name":"2021 IEEE/ACM 11th Workshop on Irregular Applications: Architectures and Algorithms (IA3)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM 11th Workshop on Irregular Applications: Architectures and Algorithms (IA3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IA354616.2021.00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Molecular docking is a key method in computer-aided drug design, where the rapid identification of drug candidates is crucial for combating diseases. AutoDock is a widely-used molecular docking program, having an irregular structure characterized by a divergent control flow and compute-intensive calculations. This work investigates porting AutoDock to the SX-Aurora TSUBASA vector engine and evaluates the achievable performance on a number of real-world input compounds. In particular, we discuss the platform-specific coding styles required to handle the high degree of irregularity in both local-search methods employed by AutoDock. These Solis-Wets and ADADELTA methods take up a large part of the total computation time. Based on our experiments, we achieved runtimes on the SX-Aurora TSUBASA VE 20B that are on average 3 x faster than on modern dual-socket 64-core CPU nodes. Our solution is competitive with V100 GPUs, even though these already use newer chip fabrication technology (12 nm vs. 16 nm on the VE 20B).