Dynamic Frequency Boosting beyond Critical Path Delay

N. Zompakis, S. Xydis
{"title":"Dynamic Frequency Boosting beyond Critical Path Delay","authors":"N. Zompakis, S. Xydis","doi":"10.1145/3508352.3549433","DOIUrl":null,"url":null,"abstract":"This paper introduces an innovative post-implementation Dynamic Frequency Boosting (DFB) technique to release \"hidden\" performance margins of digital circuit designs currently suppressed by typical critical path constraint design flows, thus defining higher limits of operation speed. The proposed technique goes beyond state-of-the-art and exploits the data-driven path delay variability incorporating an innovative hardware clocking mechanism that detects in real-time the paths’ activation. In contrast to timing speculation, the operating speed is adjusted on the nominal path delay activation, succeeding an error-free acceleration. The proposed technique has been evaluated on three FPGA-based use cases carefully selected to exhibit differing domain characteristics, i.e i) a third party DNN inference accelerator IP for CIFAR-10 images achieving an average speedup of 18%, ii) a highly designer-optimized Optical Digital Equalizer design, in which DBF delivered a speedup of 50% and iii) a set of 5 synthetic designs examining high frequency (beyond 400 MHz) applications in FPGAs, achieving accelerations of 20-60% depending on the underlying path variability.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3549433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces an innovative post-implementation Dynamic Frequency Boosting (DFB) technique to release "hidden" performance margins of digital circuit designs currently suppressed by typical critical path constraint design flows, thus defining higher limits of operation speed. The proposed technique goes beyond state-of-the-art and exploits the data-driven path delay variability incorporating an innovative hardware clocking mechanism that detects in real-time the paths’ activation. In contrast to timing speculation, the operating speed is adjusted on the nominal path delay activation, succeeding an error-free acceleration. The proposed technique has been evaluated on three FPGA-based use cases carefully selected to exhibit differing domain characteristics, i.e i) a third party DNN inference accelerator IP for CIFAR-10 images achieving an average speedup of 18%, ii) a highly designer-optimized Optical Digital Equalizer design, in which DBF delivered a speedup of 50% and iii) a set of 5 synthetic designs examining high frequency (beyond 400 MHz) applications in FPGAs, achieving accelerations of 20-60% depending on the underlying path variability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超过关键路径延迟的动态频率提升
本文介绍了一种创新的实现后动态频率提升(DFB)技术,以释放目前被典型关键路径约束设计流程所抑制的数字电路设计的“隐藏”性能边际,从而定义更高的运行速度限制。所提出的技术超越了最先进的技术,利用数据驱动的路径延迟可变性,结合创新的硬件时钟机制,实时检测路径的激活。与时间推测相反,运行速度在名义路径延迟激活上进行调整,随后进行无误差加速。所提出的技术已经在三个基于fpga的用例中进行了评估,这些用例经过精心挑选,表现出不同的领域特征,即i)用于CIFAR-10图像的第三方DNN推理加速器IP实现了18%的平均加速,ii)高度优化的光学数字均衡器设计,其中DBF提供了50%的加速,iii)一组5合成设计检查fpga中的高频(超过400 MHz)应用。根据潜在的路径可变性,实现20-60%的加速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Squeezing Accumulators in Binary Neural Networks for Extremely Resource-Constrained Applications Numerically-Stable and Highly-Scalable Parallel LU Factorization for Circuit Simulation Towards High Performance and Accurate BNN Inference on FPGA with Structured Fine-grained Pruning RT-NeRF: Real-Time On-Device Neural Radiance Fields Towards Immersive AR/VR Rendering Design and Technology Co-optimization Utilizing Multi-bit Flip-flop Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1