A novel quantum algorithm for ant colony optimisation

IF 2.5 Q3 QUANTUM SCIENCE & TECHNOLOGY IET Quantum Communication Pub Date : 2021-11-02 DOI:10.1049/qtc2.12023
Mrityunjay Ghosh, Nivedita Dey, Debdeep Mitra, Amlan Chakrabarti
{"title":"A novel quantum algorithm for ant colony optimisation","authors":"Mrityunjay Ghosh,&nbsp;Nivedita Dey,&nbsp;Debdeep Mitra,&nbsp;Amlan Chakrabarti","doi":"10.1049/qtc2.12023","DOIUrl":null,"url":null,"abstract":"<p>Ant colony optimisation (ACO) is a commonly used meta-heuristic to solve complex combinatorial optimisation problems like the travelling salesman problem (TSP), vehicle routing problem (VRP) etc. However, classical ACO algorithms provide better optimal solutions but do not reduce computation time overhead to a significant extent. Algorithmic speed-up can be achieved by using parallelism offered by quantum computing. Existing quantum algorithms to solve ACO are either quantum-inspired classical algorithms or hybrid quantum-classical algorithms. Since all these algorithms need the intervention of classical computing, leveraging the true potential of quantum computing on real quantum hardware remains a challenge. This study's main contribution is to propose a fully quantum algorithm to solve ACO, enhancing the quantum information processing toolbox in the fault-tolerant quantum computing (FTQC) era. We have solved the single source single destination (SSSD) shortest-path problem using our proposed adaptive quantum circuit for representing the dynamic pheromone-updating strategy in real IBMQ devices. Our quantum ACO technique can be further used as a quantum ORACLE to solve complex optimisation problems in a fully quantum setup with significant speed up upon the availability of more qubits.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"3 1","pages":"13-29"},"PeriodicalIF":2.5000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12023","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Quantum Communication","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/qtc2.12023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 10

Abstract

Ant colony optimisation (ACO) is a commonly used meta-heuristic to solve complex combinatorial optimisation problems like the travelling salesman problem (TSP), vehicle routing problem (VRP) etc. However, classical ACO algorithms provide better optimal solutions but do not reduce computation time overhead to a significant extent. Algorithmic speed-up can be achieved by using parallelism offered by quantum computing. Existing quantum algorithms to solve ACO are either quantum-inspired classical algorithms or hybrid quantum-classical algorithms. Since all these algorithms need the intervention of classical computing, leveraging the true potential of quantum computing on real quantum hardware remains a challenge. This study's main contribution is to propose a fully quantum algorithm to solve ACO, enhancing the quantum information processing toolbox in the fault-tolerant quantum computing (FTQC) era. We have solved the single source single destination (SSSD) shortest-path problem using our proposed adaptive quantum circuit for representing the dynamic pheromone-updating strategy in real IBMQ devices. Our quantum ACO technique can be further used as a quantum ORACLE to solve complex optimisation problems in a fully quantum setup with significant speed up upon the availability of more qubits.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的量子蚁群优化算法
蚁群算法是一种常用的元启发式算法,用于解决复杂的组合优化问题,如旅行商问题(TSP)、车辆路径问题(VRP)等。然而,经典的蚁群算法提供了更好的最优解,但并没有显著减少计算时间开销。算法加速可以通过利用量子计算提供的并行性来实现。求解蚁群问题的现有量子算法有量子启发经典算法和混合量子经典算法。由于所有这些算法都需要经典计算的干预,因此在真正的量子硬件上利用量子计算的真正潜力仍然是一个挑战。本研究的主要贡献是提出了一种全量子算法来解决蚁群问题,增强了容错量子计算(FTQC)时代的量子信息处理工具箱。我们使用我们提出的自适应量子电路来表示实际IBMQ设备中的动态信息素更新策略,解决了单源单目的地(SSSD)最短路径问题。我们的量子蚁群控制技术可以进一步用作量子ORACLE,以解决全量子设置中的复杂优化问题,并在更多量子比特的可用性上显着加快速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
0
期刊最新文献
Quantum teleportation in higher dimension and entanglement distribution via quantum switches Real-time seedless post-processing for quantum random number generators Quantum blockchain: Trends, technologies, and future directions Quantum anonymous one vote veto protocol based on entanglement swapping Enhanced QSVM with elitist non-dominated sorting genetic optimisation algorithm for breast cancer diagnosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1