Extending the friction cone algorithm for arbitrary polygon based haptic objects

N. Melder, W. Harwin
{"title":"Extending the friction cone algorithm for arbitrary polygon based haptic objects","authors":"N. Melder, W. Harwin","doi":"10.1109/HAPTIC.2004.1287201","DOIUrl":null,"url":null,"abstract":"Most haptic environments are based on single point interactions whereas in practice, object manipulation requires multiple contact points between the object, fingers, thumb and palm. The friction cone algorithm was developed specifically to work well in a multi-finger haptic environment where object manipulation would occur. However, the friction cone algorithm has two shortcomings when applied to polygon meshes: there is no means of transitioning polygon boundaries or feeling non-convex edges. In order to overcome these deficiencies, face directed connection graphs have been developed as well as a robust method for applying friction to non-convex edges. Both these extensions are described herein, as well as the implementation issues associated with them.","PeriodicalId":384123,"journal":{"name":"12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2004. HAPTICS '04. Proceedings.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2004. HAPTICS '04. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HAPTIC.2004.1287201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

Most haptic environments are based on single point interactions whereas in practice, object manipulation requires multiple contact points between the object, fingers, thumb and palm. The friction cone algorithm was developed specifically to work well in a multi-finger haptic environment where object manipulation would occur. However, the friction cone algorithm has two shortcomings when applied to polygon meshes: there is no means of transitioning polygon boundaries or feeling non-convex edges. In order to overcome these deficiencies, face directed connection graphs have been developed as well as a robust method for applying friction to non-convex edges. Both these extensions are described herein, as well as the implementation issues associated with them.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扩展了基于任意多边形触觉对象的摩擦锥算法
大多数触觉环境都是基于单点交互,而在实践中,物体操作需要物体、手指、拇指和手掌之间的多个接触点。摩擦锥算法是专门为在多指触觉环境中工作而开发的,在这种环境中会发生物体操作。然而,摩擦锥算法在应用于多边形网格时存在两个缺点:无法实现多边形边界的过渡和非凸边的感觉。为了克服这些缺陷,研究人员开发了面向面连接图以及一种将摩擦应用于非凸边的鲁棒方法。本文描述了这两个扩展,以及与它们相关的实现问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Physics-based burr haptic simulation: tuning and evaluation Assembling virtual fixtures for guidance in training environments Teleoperation with sensor/actuator asymmetry: task performance with partial force feedback Toward event-based haptics: rendering contact using open-loop force pulses Performance analysis of steady-hand teleoperation versus cooperative manipulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1