Derivation of E-model Equipment Impairment Factors for Narrowband and Wideband Opus Codec Using the Instrumental Method

Mohannad Al-Ahmadi, P. Počta, H. Melvin
{"title":"Derivation of E-model Equipment Impairment Factors for Narrowband and Wideband Opus Codec Using the Instrumental Method","authors":"Mohannad Al-Ahmadi, P. Počta, H. Melvin","doi":"10.1109/ISSC49989.2020.9180160","DOIUrl":null,"url":null,"abstract":"Real-time multimedia applications like Web realtime communication WebRTC support a wide range of codecs, from the standard narrowband up to fullband codecs. The IETF standardized Opus codec is the default codec utilized by WebRTC speech and audio applications, by supporting a wide range of bitrates. In current best effort networks, network impairments such as packet loss, delay and jitter affect the quality of VoIP. To assess the impact of such impairments in order to estimate the quality experienced by the end users of speech applications, the E-model standardized in ITU-T Rec. G.107 can be used. In this paper we derive codec-specific parameters required by the E-model to estimate the quality degradation in speech applications deploying narrowband and wideband Opus codec, namely the equipment impairment factor Ie and packet loss robustness factor Bpl. We followed the ITU-T methods designed for this purpose and share the results arising from all the experiments covering all the narrowband and wideband Opus codec conditions. The derived values make it possible to integrate the E-model in realtime communication applications including WebRTC to assess the quality experienced by the end user.","PeriodicalId":351013,"journal":{"name":"2020 31st Irish Signals and Systems Conference (ISSC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 31st Irish Signals and Systems Conference (ISSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSC49989.2020.9180160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Real-time multimedia applications like Web realtime communication WebRTC support a wide range of codecs, from the standard narrowband up to fullband codecs. The IETF standardized Opus codec is the default codec utilized by WebRTC speech and audio applications, by supporting a wide range of bitrates. In current best effort networks, network impairments such as packet loss, delay and jitter affect the quality of VoIP. To assess the impact of such impairments in order to estimate the quality experienced by the end users of speech applications, the E-model standardized in ITU-T Rec. G.107 can be used. In this paper we derive codec-specific parameters required by the E-model to estimate the quality degradation in speech applications deploying narrowband and wideband Opus codec, namely the equipment impairment factor Ie and packet loss robustness factor Bpl. We followed the ITU-T methods designed for this purpose and share the results arising from all the experiments covering all the narrowband and wideband Opus codec conditions. The derived values make it possible to integrate the E-model in realtime communication applications including WebRTC to assess the quality experienced by the end user.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用仪器法推导窄带和宽带工作码编解码器的e型设备损伤因子
像Web实时通信这样的实时多媒体应用支持广泛的编解码器,从标准窄带到全带编解码器。IETF标准化的Opus编解码器是WebRTC语音和音频应用程序使用的默认编解码器,支持广泛的比特率。在目前的最佳努力网络中,诸如丢包、延迟和抖动等网络缺陷会影响VoIP的质量。为了评估这种损害的影响,以估计语音应用的最终用户所体验到的质量,可以使用ITU-T Rec. G.107标准的e模型。在本文中,我们推导了e模型所需的编解码器特定参数,以估计部署窄带和宽带Opus编解码器的语音应用中的质量退化,即设备损伤因子Ie和丢包鲁棒性因子Bpl。我们遵循为此目的而设计的ITU-T方法,并分享涵盖所有窄带和宽带Opus编解码条件的所有实验结果。得到的值使得将e -模型集成到实时通信应用(包括WebRTC)中以评估最终用户体验的质量成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of Intra-Subject Variation in Gait Analysis on ASD Classification Performance in Machine Learning Models Practical Implementation of APTs on PTP Time Synchronisation Networks Not Everything You Read Is True! Fake News Detection using Machine learning Algorithms Semi-Supervised Learning with Generative Adversarial Networks for Pathological Speech Classification Reduced Complexity Approach for Uplink Rate Trajectory Prediction in Mobile Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1