Generalized estimating equations: A hybrid approach for mean parameters in multivariate regression models

C. Lange, J. Whittaker, A. Macgregor
{"title":"Generalized estimating equations: A hybrid approach for mean parameters in multivariate regression models","authors":"C. Lange, J. Whittaker, A. Macgregor","doi":"10.1191/1471082x02st031oa","DOIUrl":null,"url":null,"abstract":"We propose an extension of the generalized estimating equation approach to multivariate regression models (Liang and Zeger, 1986) which allows the estimation of dispersion and association parameters in the covariance matrix partly using estimating equations as in Prentice and Zhao (1991), and partly by the direct use of consistent estimators. The advantages of this hybrid approach over that of Prentice and Zhao (1991) are a reduction in the number of fourth moment assumptions that must be made, and the consequent reduction in numerical complexity. We show that the type of estimation used for covariance parameters does not affect the asymptotic efficiency of the mean parameter estimates. The advantages of the hybrid model are illustrated by a simulation study. This work was motivated by problems in statistical genetics, and we illustrate our approach using a twin study examining association between the osteocalcin receptor and various osteoporisis-related traits.","PeriodicalId":354759,"journal":{"name":"Statistical Modeling","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1191/1471082x02st031oa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We propose an extension of the generalized estimating equation approach to multivariate regression models (Liang and Zeger, 1986) which allows the estimation of dispersion and association parameters in the covariance matrix partly using estimating equations as in Prentice and Zhao (1991), and partly by the direct use of consistent estimators. The advantages of this hybrid approach over that of Prentice and Zhao (1991) are a reduction in the number of fourth moment assumptions that must be made, and the consequent reduction in numerical complexity. We show that the type of estimation used for covariance parameters does not affect the asymptotic efficiency of the mean parameter estimates. The advantages of the hybrid model are illustrated by a simulation study. This work was motivated by problems in statistical genetics, and we illustrate our approach using a twin study examining association between the osteocalcin receptor and various osteoporisis-related traits.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
广义估计方程:多元回归模型中平均参数的混合方法
我们建议将广义估计方程方法扩展到多元回归模型(Liang和Zeger, 1986),该模型允许部分使用Prentice和Zhao(1991)中的估计方程,部分通过直接使用一致估计量来估计协方差矩阵中的离散和关联参数。与Prentice和Zhao(1991)的方法相比,这种混合方法的优点是减少了必须做出的第四矩假设的数量,从而降低了数值复杂性。我们证明了协方差参数的估计类型不影响平均参数估计的渐近效率。通过仿真研究说明了混合模型的优点。这项工作的动机是统计遗传学的问题,我们用一个双胞胎研究来说明我们的方法,研究骨钙素受体和各种骨质疏松症相关特征之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Use of auxiliary data in semi-parametric spatial regression with nonignorable missing responses Bayesian modeling for genetic association in case-control studies: accounting for unknown population substructure GLMM approach to study the spatial and temporal evolution of spikes in the small intestine Comparing nonparametric surfaces Analyzing the emergence times of permanent teeth: an example of modeling the covariance matrix with interval-censored data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1