DeepSen: A Deep Learning-based Framework for Sentiment Analysis from Multi-Domain Heterogeneous Data

Nasehatul Mustakim, Avishek Das, Omar Sharif, M. M. Hoque
{"title":"DeepSen: A Deep Learning-based Framework for Sentiment Analysis from Multi-Domain Heterogeneous Data","authors":"Nasehatul Mustakim, Avishek Das, Omar Sharif, M. M. Hoque","doi":"10.1109/ICCIT57492.2022.10055860","DOIUrl":null,"url":null,"abstract":"People usually express their emotions, views, or sentiment in textual form. The textual sentiment analysis (TSA) identifies or classifies opinions or feelings from texts in a predefined class. The TSA is complicated or infeasible manually due to its voluminous nature and unstructured or messy conditions. Therefore, the automatic sentiment analysis method quickly paves the way to identify the hidden sentiment polarity from the textual content. Although a few studies on sentiment analysis were conducted on a single or specific domain, developing the TSA method concerning multi-domains is unexplored in Bengali. This paper presents a deep learning-based framework called DeepSen to detect textual sentiment from Bengali texts into three polarities: positive, negative and neutral. Four benchmark corpora from available domains, Book, Restaurant, Drama and Cricket, have been used to analyze sentiment from multi-domain heterogeneous data. This work investigates six popular machine learning (LR, DT, MNB, SVM, RF, AdaBoost) and five deep learning (CNN, LSTM, GRU, BiGRU, BiLSTM) techniques using four benchmark Bengali corpora to perform TSA tasks. The evaluation result reveals that the BiLSTM method obtained the highest weighted f1-score (0.85) among all models.","PeriodicalId":255498,"journal":{"name":"2022 25th International Conference on Computer and Information Technology (ICCIT)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 25th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIT57492.2022.10055860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

People usually express their emotions, views, or sentiment in textual form. The textual sentiment analysis (TSA) identifies or classifies opinions or feelings from texts in a predefined class. The TSA is complicated or infeasible manually due to its voluminous nature and unstructured or messy conditions. Therefore, the automatic sentiment analysis method quickly paves the way to identify the hidden sentiment polarity from the textual content. Although a few studies on sentiment analysis were conducted on a single or specific domain, developing the TSA method concerning multi-domains is unexplored in Bengali. This paper presents a deep learning-based framework called DeepSen to detect textual sentiment from Bengali texts into three polarities: positive, negative and neutral. Four benchmark corpora from available domains, Book, Restaurant, Drama and Cricket, have been used to analyze sentiment from multi-domain heterogeneous data. This work investigates six popular machine learning (LR, DT, MNB, SVM, RF, AdaBoost) and five deep learning (CNN, LSTM, GRU, BiGRU, BiLSTM) techniques using four benchmark Bengali corpora to perform TSA tasks. The evaluation result reveals that the BiLSTM method obtained the highest weighted f1-score (0.85) among all models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DeepSen:基于深度学习的多领域异构数据情感分析框架
人们通常以文本的形式表达自己的情感、观点或情感。文本情感分析(TSA)在预定义的类中识别或分类文本中的观点或感受。由于TSA庞大的体积和杂乱无章的环境,人工操作是复杂的或不可行的。因此,自动情感分析方法为从文本内容中快速识别隐藏的情感极性铺平了道路。尽管在单个或特定领域进行了一些情感分析研究,但在孟加拉语中开发涉及多领域的TSA方法尚未得到探索。本文提出了一种名为DeepSen的基于深度学习的框架,用于从孟加拉语文本中检测文本情感,分为三种极性:积极、消极和中性。四个基准语料库从可用的领域,书,餐馆,戏剧和板球,已经被用来分析情感从多领域异构数据。这项工作调查了六种流行的机器学习(LR, DT, MNB, SVM, RF, AdaBoost)和五种深度学习(CNN, LSTM, GRU, BiGRU, BiLSTM)技术,使用四种基准孟加拉语料库执行TSA任务。评价结果显示,在所有模型中,BiLSTM方法获得了最高的加权f1得分(0.85)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SlotFinder: A Spatio-temporal based Car Parking System Land Cover and Land Use Detection using Semi-Supervised Learning Comparative Analysis of Process Scheduling Algorithm using AI models Throughput Optimization of IEEE 802.15.4e TSCH-Based Scheduling: A Deep Neural Network (DNN) Scheme Towards Developing a Voice-Over-Guided System for Visually Impaired People to Learn Writing the Alphabets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1