{"title":"Quantitative Verification and Design Space Exploration Under Uncertainty with Parametric Stochastic Contracts","authors":"Chanwook Oh, M. Lora, P. Nuzzo","doi":"10.1145/3508352.3549446","DOIUrl":null,"url":null,"abstract":"This paper proposes an automated framework for quantitative verification and design space exploration of cyber-physical systems in the presence of uncertainty, leveraging assume-guarantee contracts expressed in Stochastic Signal Temporal Logic (StSTL). We introduce quantitative semantics for StSTL and formulations of the quantitative verification and design space exploration problems as bi-level optimization problems. We show that these optimization problems can be effectively solved for a class of stochastic systems and a fragment of bounded-time StSTL formulas. Our algorithm searches for partitions of the upper-level design space such that the solutions of the lower-level problems satisfy the upper-level constraints. A set of optimal parameter values are then selected within these partitions. We illustrate the effectiveness of our framework on the design of a multi-sensor perception system and an automatic cruise control system.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3549446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper proposes an automated framework for quantitative verification and design space exploration of cyber-physical systems in the presence of uncertainty, leveraging assume-guarantee contracts expressed in Stochastic Signal Temporal Logic (StSTL). We introduce quantitative semantics for StSTL and formulations of the quantitative verification and design space exploration problems as bi-level optimization problems. We show that these optimization problems can be effectively solved for a class of stochastic systems and a fragment of bounded-time StSTL formulas. Our algorithm searches for partitions of the upper-level design space such that the solutions of the lower-level problems satisfy the upper-level constraints. A set of optimal parameter values are then selected within these partitions. We illustrate the effectiveness of our framework on the design of a multi-sensor perception system and an automatic cruise control system.