Fast and sleek glyph rendering for interactive HARDI data exploration

T. Peeters, V. Prčkovska, M. Almsick, A. Vilanova, B. H. Romeny
{"title":"Fast and sleek glyph rendering for interactive HARDI data exploration","authors":"T. Peeters, V. Prčkovska, M. Almsick, A. Vilanova, B. H. Romeny","doi":"10.1109/PACIFICVIS.2009.4906851","DOIUrl":null,"url":null,"abstract":"High angular resolution diffusion imaging (HARDI) is an emerging magnetic resonance imaging (MRI) technique that overcomes some decisive limitations of its predecessor diffusion tensor imaging (DTI). HARDI can resolve locally more than one direction in the diffusion pattern of water molecules and thereby opens up the opportunity to display and track crossing fibers. Showing the local structure of the reconstructed, angular probability profiles in a fast, detailed, and interactive way can improve the quality of the research in this area and help to move it into clinical application. In this paper we present a novel approach for HARDI glyph visualization or, more generally, for the visualization of any function that resides on a sphere and that can be expressed by a Laplace series. Our GPU-accelerated glyph rendering improves the performance of the traditional way of HARDI glyph visualization as well as the visual quality of the reconstructed data, thus offering interactive HARDI data exploration of the local structure of the white brain matter in-vivo. In this paper we exploit the capabilities of modern GPUs to overcome the large, processor-intensive and memory-consuming data visualization.","PeriodicalId":133992,"journal":{"name":"2009 IEEE Pacific Visualization Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Pacific Visualization Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACIFICVIS.2009.4906851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

High angular resolution diffusion imaging (HARDI) is an emerging magnetic resonance imaging (MRI) technique that overcomes some decisive limitations of its predecessor diffusion tensor imaging (DTI). HARDI can resolve locally more than one direction in the diffusion pattern of water molecules and thereby opens up the opportunity to display and track crossing fibers. Showing the local structure of the reconstructed, angular probability profiles in a fast, detailed, and interactive way can improve the quality of the research in this area and help to move it into clinical application. In this paper we present a novel approach for HARDI glyph visualization or, more generally, for the visualization of any function that resides on a sphere and that can be expressed by a Laplace series. Our GPU-accelerated glyph rendering improves the performance of the traditional way of HARDI glyph visualization as well as the visual quality of the reconstructed data, thus offering interactive HARDI data exploration of the local structure of the white brain matter in-vivo. In this paper we exploit the capabilities of modern GPUs to overcome the large, processor-intensive and memory-consuming data visualization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于交互式HARDI数据探索的快速和圆滑的字形渲染
高角分辨率扩散成像(HARDI)是一种新兴的磁共振成像(MRI)技术,克服了其前身扩散张量成像(DTI)的一些决定性局限性。HARDI可以在水分子的扩散模式中局部解析多个方向,从而为显示和跟踪交叉纤维提供了机会。快速、详细、互动地显示重建的局部结构、角度概率分布图,可以提高该领域的研究质量,有助于将其推向临床应用。在本文中,我们提出了一种新的方法来显示HARDI字形,或者更一般地说,用于显示任何驻留在球上的函数,并且可以用拉普拉斯级数表示。我们的gpu加速字形渲染提高了传统HARDI字形可视化方式的性能和重构数据的视觉质量,从而提供了活体脑白质局部结构的交互式HARDI数据探索。在本文中,我们利用现代gpu的能力来克服大型,处理器密集型和内存消耗的数据可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Out-of-core volume rendering for time-varying fields using a space-partitioning time (SPT) tree A graph reading behavior: Geodesic-path tendency HiMap: Adaptive visualization of large-scale online social networks A self-adaptive treemap-based technique for visualizing hierarchical data in 3D Interactive feature extraction and tracking by utilizing region coherency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1