A. Botta, R. Canonico, Annalisa Navarro, S. Ruggiero, G. Ventre
{"title":"AI-enabled SD-WAN: the case of Reinforcement Learning","authors":"A. Botta, R. Canonico, Annalisa Navarro, S. Ruggiero, G. Ventre","doi":"10.1109/LATINCOM56090.2022.10000667","DOIUrl":null,"url":null,"abstract":"Traffic Engineering in WAN infrastructures is critical for the efficient management of costly resources and for guaranteeing acceptable QoS levels to applications. SD-WAN has recently emerged as a key solution to manage enterprise WANs, allowing fine-grained, policy-based control over traffic flows. In this paper, we propose a framework based on Reinforcement Learning for the effective use of multiple channels connecting distributed sites of a company. We evaluate it in a realistic, emulated network with a centralized SDN controller. Results show that under heavy load conditions, our approach leads to a 33% reduction in the number of QoS policy violations compared to a benchmark approach. Smaller average latency and connectivity costs are also obtained.","PeriodicalId":221354,"journal":{"name":"2022 IEEE Latin-American Conference on Communications (LATINCOM)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Latin-American Conference on Communications (LATINCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LATINCOM56090.2022.10000667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Traffic Engineering in WAN infrastructures is critical for the efficient management of costly resources and for guaranteeing acceptable QoS levels to applications. SD-WAN has recently emerged as a key solution to manage enterprise WANs, allowing fine-grained, policy-based control over traffic flows. In this paper, we propose a framework based on Reinforcement Learning for the effective use of multiple channels connecting distributed sites of a company. We evaluate it in a realistic, emulated network with a centralized SDN controller. Results show that under heavy load conditions, our approach leads to a 33% reduction in the number of QoS policy violations compared to a benchmark approach. Smaller average latency and connectivity costs are also obtained.