Preserving Privacy in Joining Recommender Systems

C.-L.A. Hsieh, J. Zhan, D. Zeng, Feiyue Wang
{"title":"Preserving Privacy in Joining Recommender Systems","authors":"C.-L.A. Hsieh, J. Zhan, D. Zeng, Feiyue Wang","doi":"10.1109/ISA.2008.101","DOIUrl":null,"url":null,"abstract":"In the E-commerce era, recommender system is introduced to share customer experience and comments. At the same time, there is a need for E-commerce entities to join their recommender system databases to enhance the reliability toward prospective customers and also to maximize the precision of target marketing. However, there will be a privacy disclosure hazard while joining recommender system databases. In order to preserve privacy in merging recommender system databases, we design a novel algorithm based on ElGamal scheme of homomorphic encryption.","PeriodicalId":212375,"journal":{"name":"2008 International Conference on Information Security and Assurance (isa 2008)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Information Security and Assurance (isa 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISA.2008.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In the E-commerce era, recommender system is introduced to share customer experience and comments. At the same time, there is a need for E-commerce entities to join their recommender system databases to enhance the reliability toward prospective customers and also to maximize the precision of target marketing. However, there will be a privacy disclosure hazard while joining recommender system databases. In order to preserve privacy in merging recommender system databases, we design a novel algorithm based on ElGamal scheme of homomorphic encryption.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在加入推荐系统中保护隐私
在电子商务时代,引入了推荐系统来分享客户的体验和评论。同时,电子商务实体需要加入其推荐系统数据库,以提高对潜在客户的可靠性,并最大限度地提高目标营销的准确性。然而,在加入推荐系统数据库时会有隐私泄露的危险。为了保护推荐系统数据库合并过程中的隐私,我们设计了一种基于ElGamal同态加密方案的新算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A New Electronic Communication Technology - VT Position Code Communication Technology and Its Implementation CRYPTEX Model for Software Source Code The Economics of Privacy-Privacy: People, Policy and Technology Why MSN Lost to QQ in China Market? Different Privacy Protection Design Maximizing Return on Security Safeguard Investment with Constraint Satisfaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1