TDOA Parameter Estimation based on VMD-WTD in Satellite Interference Location

Shibing Zhu, Haifeng Shuai, Changqing Li, Rui Liu
{"title":"TDOA Parameter Estimation based on VMD-WTD in Satellite Interference Location","authors":"Shibing Zhu, Haifeng Shuai, Changqing Li, Rui Liu","doi":"10.1145/3446132.3446156","DOIUrl":null,"url":null,"abstract":"Satellite interference source location system is one of the important means of satellite communication anti-interference. High-precision satellite interference source positioning technology can accurately lock the location of the interference source and take measures to remove the interference. Time difference of arrival (TDOA) parameter estimation is a key link in the satellite interference source location system, and the accuracy of TDOA parameter estimation directly affects the location accuracy. This paper proposes a new TDOA parameter estimation algorithm that combines variational model decomposition (VMD) and wavelet threshold denoising (WTD). Firstly, the signal is adaptively decomposed into multiple components through the VMD algorithm to ensure the preservation of the original signal during the denoising process, then an improved WTD algorithm is used to remove the influence of noise in the satellite reception signal. Finally, accurate TDOA parameters are obtained. Numerical simulations show that the accuracy of the improved algorithm are better than conventional methods, thereby indirectly improving the accuracy of satellite interference source location.","PeriodicalId":125388,"journal":{"name":"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3446132.3446156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Satellite interference source location system is one of the important means of satellite communication anti-interference. High-precision satellite interference source positioning technology can accurately lock the location of the interference source and take measures to remove the interference. Time difference of arrival (TDOA) parameter estimation is a key link in the satellite interference source location system, and the accuracy of TDOA parameter estimation directly affects the location accuracy. This paper proposes a new TDOA parameter estimation algorithm that combines variational model decomposition (VMD) and wavelet threshold denoising (WTD). Firstly, the signal is adaptively decomposed into multiple components through the VMD algorithm to ensure the preservation of the original signal during the denoising process, then an improved WTD algorithm is used to remove the influence of noise in the satellite reception signal. Finally, accurate TDOA parameters are obtained. Numerical simulations show that the accuracy of the improved algorithm are better than conventional methods, thereby indirectly improving the accuracy of satellite interference source location.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卫星干扰定位中基于VMD-WTD的TDOA参数估计
卫星干扰源定位系统是卫星通信抗干扰的重要手段之一。高精度卫星干扰源定位技术可以准确锁定干扰源的位置,并采取措施消除干扰。到达时差分(TDOA)参数估计是卫星干扰源定位系统的关键环节,TDOA参数估计的准确性直接影响到定位精度。提出了一种结合变分模型分解(VMD)和小波阈值去噪(WTD)的TDOA参数估计算法。首先,通过VMD算法将信号自适应分解为多个分量,保证在去噪过程中保持原始信号,然后采用改进的WTD算法去除卫星接收信号中噪声的影响。最后得到准确的TDOA参数。数值仿真结果表明,改进算法的精度优于传统方法,从而间接提高了卫星干扰源定位的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lane Detection Combining Details and Integrity: an Advanced Method for Lane Detection The Cat's Eye Effect Target Recognition Method Based on deep convolutional neural network Leveraging Different Context for Response Generation through Topic-guided Multi-head Attention Siamese Multiplicative LSTM for Semantic Text Similarity Multi-constrained Vehicle Routing Problem Solution based on Adaptive Genetic Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1