Knowledge Sources for Word Sense Disambiguation of Biomedical Text

Mark Stevenson, Yikun Guo, R. Gaizauskas, David Martínez
{"title":"Knowledge Sources for Word Sense Disambiguation of Biomedical Text","authors":"Mark Stevenson, Yikun Guo, R. Gaizauskas, David Martínez","doi":"10.3115/1572306.1572321","DOIUrl":null,"url":null,"abstract":"Like text in other domains, biomedical documents contain a range of terms with more than one possible meaning. These ambiguities form a significant obstacle to the automatic processing of biomedical texts. Previous approaches to resolving this problem have made use of a variety of knowledge sources including linguistic information (from the context in which the ambiguous term is used) and domain-specific resources (such as UMLS). In this paper we compare a range of knowledge sources which have been previously used and introduce a novel one: MeSH terms. The best performance is obtained using linguistic features in combination with MeSH terms. Results from our system outperform published results for previously reported systems on a standard test set (the NLM-WSD corpus).","PeriodicalId":200974,"journal":{"name":"Workshop on Biomedical Natural Language Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Biomedical Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1572306.1572321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Like text in other domains, biomedical documents contain a range of terms with more than one possible meaning. These ambiguities form a significant obstacle to the automatic processing of biomedical texts. Previous approaches to resolving this problem have made use of a variety of knowledge sources including linguistic information (from the context in which the ambiguous term is used) and domain-specific resources (such as UMLS). In this paper we compare a range of knowledge sources which have been previously used and introduce a novel one: MeSH terms. The best performance is obtained using linguistic features in combination with MeSH terms. Results from our system outperform published results for previously reported systems on a standard test set (the NLM-WSD corpus).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物医学文本词义消歧的知识来源
与其他领域的文本一样,生物医学文档包含一系列具有多种可能含义的术语。这些歧义构成了生物医学文本自动处理的重大障碍。以前解决这个问题的方法利用了各种知识来源,包括语言信息(来自使用歧义术语的上下文中)和特定于领域的资源(例如UMLS)。在本文中,我们比较了一系列以前使用的知识来源,并引入了一种新的知识来源:MeSH术语。将语言特征与MeSH术语相结合,可以获得最佳的性能。我们系统的结果在标准测试集(NLM-WSD语料库)上优于先前报告的系统的公布结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BIOptimus: Pre-training an Optimal Biomedical Language Model with Curriculum Learning for Named Entity Recognition Multi-Source (Pre-)Training for Cross-Domain Measurement, Unit and Context Extraction Building a Corpus for Biomedical Relation Extraction of Species Mentions Good Data, Large Data, or No Data? Comparing Three Approaches in Developing Research Aspect Classifiers for Biomedical Papers Evaluation of ChatGPT on Biomedical Tasks: A Zero-Shot Comparison with Fine-Tuned Generative Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1