Non-intrusive load monitoring based on switching voltage transients and wavelet transforms

C. Duarte, P. Delmar, K. Goossen, K. Barner, E. Gómez-Luna
{"title":"Non-intrusive load monitoring based on switching voltage transients and wavelet transforms","authors":"C. Duarte, P. Delmar, K. Goossen, K. Barner, E. Gómez-Luna","doi":"10.1109/FIIW.2012.6378333","DOIUrl":null,"url":null,"abstract":"Continuous Wavelet Transform (CWT) analysis to find feature vectors for switching voltage transients for Non-Intrusive Load Monitoring (NILM) is presented and discussed, and compared with the previously used short time Fourier transform (STFT). The feature vectors computed from both CWT and STFT were used to train Support Vector Machines (SVMs) that identify the connection or disconnection of appliances for a NILM system. Experimental results show that the CWT analysis based on the complex Morlet wavelet improves classification accuracy as compared to the analysis based on STFT. More importantly, a 20× reduction of the vector size requirement is shown, thus greatly lowering computational requirements. It can be expected that commercial transient-based NILM will be based upon the CWT methods shown here.","PeriodicalId":170653,"journal":{"name":"2012 Future of Instrumentation International Workshop (FIIW) Proceedings","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Future of Instrumentation International Workshop (FIIW) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FIIW.2012.6378333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

Abstract

Continuous Wavelet Transform (CWT) analysis to find feature vectors for switching voltage transients for Non-Intrusive Load Monitoring (NILM) is presented and discussed, and compared with the previously used short time Fourier transform (STFT). The feature vectors computed from both CWT and STFT were used to train Support Vector Machines (SVMs) that identify the connection or disconnection of appliances for a NILM system. Experimental results show that the CWT analysis based on the complex Morlet wavelet improves classification accuracy as compared to the analysis based on STFT. More importantly, a 20× reduction of the vector size requirement is shown, thus greatly lowering computational requirements. It can be expected that commercial transient-based NILM will be based upon the CWT methods shown here.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于开关电压瞬态和小波变换的非侵入式负荷监测
提出并讨论了连续小波变换(CWT)分析方法在非侵入式负荷监测(NILM)中寻找开关电压瞬态特征向量的方法,并与之前使用的短时傅立叶变换(STFT)进行了比较。从CWT和STFT计算的特征向量用于训练支持向量机(svm),以识别NILM系统中设备的连接或断开。实验结果表明,基于复Morlet小波的CWT分析比基于STFT的分析提高了分类精度。更重要的是,矢量大小要求减少了20倍,从而大大降低了计算需求。可以预期,商业的基于瞬态的NILM将基于这里所示的CWT方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Calibration monitoring for sensor calibration interval extension: Identifying technical gaps Using micro-electro-mechanical systems (MEMS) as small antennas Sensing and communications in an underwater environment Automating and accelerating the additive manufacturing design process with multi-objective constrained evolutionary optimization and HPC/Cloud computing Prognostics health management and life beyond 60 for nuclear power plants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1