Resilience Assessment and Enhancement Strategies of Transmission System under Extreme Ice Disaster

Wei Wang, Song Gao, Han Zhang, Dexin Li, Linbo Fu
{"title":"Resilience Assessment and Enhancement Strategies of Transmission System under Extreme Ice Disaster","authors":"Wei Wang, Song Gao, Han Zhang, Dexin Li, Linbo Fu","doi":"10.1109/iSPEC54162.2022.10033057","DOIUrl":null,"url":null,"abstract":"Ice storm event with high impact and low probability causes a huge challenge to the normal operation of the transmission system. To assess and enhance the resilience of the transmission system under an ice disaster, this paper constructs a resilience assessment and enhancement method for the transmission system. Firstly, the failure rate model of the transmission line is established according to the characteristics of the ice disaster scenario. Then, the resilience assessment metrics are constructed by analyzing the whole process of the system resilience under an ice disaster. On this basis, a resilience enhancement method under the ice disaster is proposed by using the transfer entropy of power flow to screen the lines that need deicing. Finally, the IEEE-30 bus transmission system is utilized to assess the resilience of the transmission system and verify the effectiveness of the proposed resilience enhancement method.","PeriodicalId":129707,"journal":{"name":"2022 IEEE Sustainable Power and Energy Conference (iSPEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Sustainable Power and Energy Conference (iSPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSPEC54162.2022.10033057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ice storm event with high impact and low probability causes a huge challenge to the normal operation of the transmission system. To assess and enhance the resilience of the transmission system under an ice disaster, this paper constructs a resilience assessment and enhancement method for the transmission system. Firstly, the failure rate model of the transmission line is established according to the characteristics of the ice disaster scenario. Then, the resilience assessment metrics are constructed by analyzing the whole process of the system resilience under an ice disaster. On this basis, a resilience enhancement method under the ice disaster is proposed by using the transfer entropy of power flow to screen the lines that need deicing. Finally, the IEEE-30 bus transmission system is utilized to assess the resilience of the transmission system and verify the effectiveness of the proposed resilience enhancement method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
极端冰灾下输电系统恢复力评估及增强策略
大影响、小概率的冰暴事件对输电系统的正常运行造成了巨大的挑战。为了评估和增强冰雪灾害下输电系统的弹性,本文构建了输电系统弹性评估和增强方法。首先,根据冰雪灾害场景的特点,建立输电线路的故障率模型;然后,通过分析冰情灾害下系统恢复力的全过程,构建了系统恢复力评价指标。在此基础上,提出了一种利用潮流传递熵筛选需要除冰线路的冰灾恢复增强方法。最后,利用IEEE-30总线传输系统对传输系统的弹性进行了评估,验证了所提出的弹性增强方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimization strategy for multi-area DC dispatching control considering frequency constraints Design and Application Research of Synchronous Temporary Block Function between Valve Groups on Modular Multilevel Converter Ultra High Voltage Direct Current System A Multi-Stack Vanadium Redox Flow Battery Model Considering Electrolyte Transfer Delay Analysis of Kuramoto models for AC microgrids based on droop control Nodal Pricing Comparison between DCOPF and ACOPF: Case Studies for the Power Systems in Iceland and Germany
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1