Video Smoke Removal from a Single Image Sequence

Shiori Yamaguchi, K. Hirai, T. Horiuchi
{"title":"Video Smoke Removal from a Single Image Sequence","authors":"Shiori Yamaguchi, K. Hirai, T. Horiuchi","doi":"10.1587/transfun.2020imp0013","DOIUrl":null,"url":null,"abstract":"In this study, we present a novel method for removing smoke from videos based on a single image sequence. Smoke is a significant artifact in images or videos because it can reduce the visibility in disaster scenes. Our proposed method for removing smoke involves two main processes: (1) the development of a smoke imaging model and (2) smoke removal using spatio-temporal pixel compensation. First, we model the optical phenomena in natural scenes including smoke, which is called a smoke imaging model. Our smoke imaging model is developed by extending conventional haze imaging models. We then remove the smoke from a video in a frame-by-frame manner based on the smoke imaging model. Next, we refine the appearance of the smoke-free video by spatio-temporal pixel compensation, where we align the smoke-free frames using the corresponding pixels. To obtain the corresponding pixels, we use SIFT and color features with distance constraints. Finally, in order to obtain a clear video, we refine the pixel values based on the spatio-temporal weightings of the corresponding pixels in the smoke-free frames. We used simulated and actual smoke videos in our validation experiments. The experimental results demonstrated that our method can obtain effective smoke removal results from dynamic scenes. We also quantitatively assessed our method based on a temporal coherence measure. key words: moving camera, smoke imaging model, smoke removal, spatiotemporal pixel compensation, video processing","PeriodicalId":348826,"journal":{"name":"IEICE Trans. Fundam. Electron. Commun. Comput. Sci.","volume":"104-A 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Trans. Fundam. Electron. Commun. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/transfun.2020imp0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we present a novel method for removing smoke from videos based on a single image sequence. Smoke is a significant artifact in images or videos because it can reduce the visibility in disaster scenes. Our proposed method for removing smoke involves two main processes: (1) the development of a smoke imaging model and (2) smoke removal using spatio-temporal pixel compensation. First, we model the optical phenomena in natural scenes including smoke, which is called a smoke imaging model. Our smoke imaging model is developed by extending conventional haze imaging models. We then remove the smoke from a video in a frame-by-frame manner based on the smoke imaging model. Next, we refine the appearance of the smoke-free video by spatio-temporal pixel compensation, where we align the smoke-free frames using the corresponding pixels. To obtain the corresponding pixels, we use SIFT and color features with distance constraints. Finally, in order to obtain a clear video, we refine the pixel values based on the spatio-temporal weightings of the corresponding pixels in the smoke-free frames. We used simulated and actual smoke videos in our validation experiments. The experimental results demonstrated that our method can obtain effective smoke removal results from dynamic scenes. We also quantitatively assessed our method based on a temporal coherence measure. key words: moving camera, smoke imaging model, smoke removal, spatiotemporal pixel compensation, video processing
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从单个图像序列的视频烟雾去除
在这项研究中,我们提出了一种基于单个图像序列的去除视频烟雾的新方法。烟雾在图像或视频中是一个重要的人工制品,因为它会降低灾难现场的能见度。我们提出的除烟方法包括两个主要过程:(1)建立烟雾成像模型;(2)利用时空像素补偿进行除烟。首先,我们建立了包含烟雾的自然场景的光学现象模型,称为烟雾成像模型。我们的烟雾成像模型是在传统雾霾成像模型的基础上发展起来的。然后,我们以基于烟雾成像模型的逐帧方式从视频中删除烟雾。接下来,我们通过时空像素补偿来细化无烟视频的外观,其中我们使用相应的像素对齐无烟帧。为了获得相应的像素,我们使用SIFT和带有距离约束的颜色特征。最后,为了获得清晰的视频,我们基于无烟帧中相应像素的时空加权来细化像素值。我们在验证实验中使用了模拟和实际的烟雾视频。实验结果表明,该方法可以在动态场景下获得有效的除烟效果。我们还定量评估了我们的方法基于时间相干测量。关键词:运动摄像机,烟雾成像模型,烟雾去除,时空像素补偿,视频处理
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Erratum: Concatenated Permutation Codes under Chebyshev Distance [IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Vol. E106.A (2023), No. 3 pp.616-632] Automorphism Shuffles for Graphs and Hypergraphs and Its Applications Erratum: A Compact Digital Signature Scheme Based on the Module-LWR Problem [IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Vol. E104.A (2021), No. 9 pp.1219-1234] Learning Sparse Graph with Minimax Concave Penalty under Gaussian Markov Random Fields Ramsey Numbers of Trails
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1