Multi-stage Collaborative filtering for Tweet Geolocation

Keerti Banweer, Austin Graham, J. Ripberger, Nina L. Cesare, E. Nsoesie, Christan Earl Grant
{"title":"Multi-stage Collaborative filtering for Tweet Geolocation","authors":"Keerti Banweer, Austin Graham, J. Ripberger, Nina L. Cesare, E. Nsoesie, Christan Earl Grant","doi":"10.1145/3282825.3282831","DOIUrl":null,"url":null,"abstract":"Data from social media platforms such as Twitter can be used to analyze severe weather reports and foodborne illness outbreaks. Government officials use online reports for early estimation of the impact of catastrophes and to aid resource distribution. For online reports to be useful they must be geotagged, but location is often not available. Less then one percent of users share their location information and/or acquisition of significant sample of geolocation messages is prohibitively expensive. In this paper, we propose a multi-stage iterative model based on the popular matrix factorization technique. This algorithm uses the partial information and exploits the relationship of messages, location, and keywords to recommend locations for non-geotagged messages. We present this model for geotagging messages using recommender systems and discussion the potential applications and next steps in this work.","PeriodicalId":211655,"journal":{"name":"Proceedings of the 2nd ACM SIGSPATIAL Workshop on Recommendations for Location-based Services and Social Networks","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd ACM SIGSPATIAL Workshop on Recommendations for Location-based Services and Social Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3282825.3282831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Data from social media platforms such as Twitter can be used to analyze severe weather reports and foodborne illness outbreaks. Government officials use online reports for early estimation of the impact of catastrophes and to aid resource distribution. For online reports to be useful they must be geotagged, but location is often not available. Less then one percent of users share their location information and/or acquisition of significant sample of geolocation messages is prohibitively expensive. In this paper, we propose a multi-stage iterative model based on the popular matrix factorization technique. This algorithm uses the partial information and exploits the relationship of messages, location, and keywords to recommend locations for non-geotagged messages. We present this model for geotagging messages using recommender systems and discussion the potential applications and next steps in this work.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
推文地理定位的多阶段协同过滤
来自Twitter等社交媒体平台的数据可用于分析恶劣天气报告和食源性疾病暴发。政府官员利用在线报告对灾难的影响进行早期估计,并协助资源分配。要使在线报告有用,必须对其进行地理标记,但是位置通常不可用。只有不到1%的用户分享他们的位置信息,而且/或者获取大量地理位置信息样本的成本高得令人望而却步。本文提出了一种基于矩阵分解技术的多阶段迭代模型。该算法利用部分信息,利用消息、位置和关键字之间的关系,为没有地理标记的消息推荐位置。我们提出了使用推荐系统对消息进行地理标记的模型,并讨论了这项工作的潜在应用和下一步工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Utilizing Reverse Viewshed Analysis in Image Geo-Localization Secure Computing of GPS Trajectory Similarity: A Review Proceedings of the 2nd ACM SIGSPATIAL Workshop on Recommendations for Location-based Services and Social Networks Improving Parallel Performance of Temporally Relevant Top-K Spatial Keyword Search TrajectMe
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1