Trust Zone Formation for Building Automation Networks Using Building Information Modeling

A. Wall, Björn Butzin, D. Timmermann
{"title":"Trust Zone Formation for Building Automation Networks Using Building Information Modeling","authors":"A. Wall, Björn Butzin, D. Timmermann","doi":"10.1109/GCAIoT51063.2020.9345857","DOIUrl":null,"url":null,"abstract":"Modern Building Automation Systems (BAS) consist of sensors and actuators that are connected via an IP-based network and offer their functionality via RESTful APIs. Because a single device can be exploited by an attacker to perform attacks within the local network, we put devices into isolated groups. These groups are isolated MAC-layer Trust Zones to reduce the attack surface in contrast to a BAS with fully connected devices. We propose an algorithm that leverages the so far neglected potential of Building Information Modeling (BIM) to compute Trust Zones. We assure unimpaired operation of all applications while limiting the number of infrastructure devices. The proposed mechanisms are demonstrated considering sensors and actuators that are connected via wired Ethernet and the IEEE 802.11s WLAN mesh standard. At the application layer we make exemplary use of the Constrained Application Protocol (CoAP). Finally, we experimentally evaluate the device acquisition and selection based on our network partitioning algorithm.","PeriodicalId":398815,"journal":{"name":"2020 IEEE Global Conference on Artificial Intelligence and Internet of Things (GCAIoT)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Global Conference on Artificial Intelligence and Internet of Things (GCAIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCAIoT51063.2020.9345857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modern Building Automation Systems (BAS) consist of sensors and actuators that are connected via an IP-based network and offer their functionality via RESTful APIs. Because a single device can be exploited by an attacker to perform attacks within the local network, we put devices into isolated groups. These groups are isolated MAC-layer Trust Zones to reduce the attack surface in contrast to a BAS with fully connected devices. We propose an algorithm that leverages the so far neglected potential of Building Information Modeling (BIM) to compute Trust Zones. We assure unimpaired operation of all applications while limiting the number of infrastructure devices. The proposed mechanisms are demonstrated considering sensors and actuators that are connected via wired Ethernet and the IEEE 802.11s WLAN mesh standard. At the application layer we make exemplary use of the Constrained Application Protocol (CoAP). Finally, we experimentally evaluate the device acquisition and selection based on our network partitioning algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于建筑信息模型的楼宇自动化网络信任区域形成
现代楼宇自动化系统(BAS)由传感器和执行器组成,它们通过基于ip的网络连接,并通过RESTful api提供功能。由于攻击者可以利用单个设备在本地网络中执行攻击,因此我们将设备放入隔离的组中。与具有完全连接设备的BAS相比,这些组是隔离的mac层Trust zone,以减少攻击面。我们提出了一种算法,利用迄今为止被忽视的建筑信息模型(BIM)的潜力来计算信任区域。我们保证所有应用程序的正常运行,同时限制基础设施设备的数量。考虑到通过有线以太网和IEEE 802.11s WLAN mesh标准连接的传感器和执行器,演示了所提出的机制。在应用层,我们示范使用约束应用协议(CoAP)。最后,我们对基于网络划分算法的设备采集和选择进行了实验评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SmartBlackBox: Enhancing Driver's Safety Via Real-Time Machine Learning on IoT Insurance Black-Boxes Reducing Tail Latency In Cassandra Cluster Using Regression Based Replica Selection Algorithm Qurra : an Offline AI-based Mobile Doctor Towards an IoT-based Deep Learning Architecture for Camera Trap Image Classification Optimization Model for an Individualized IoT Ambient Monitoring and Control System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1