A Fast Blind Deconvolution Algorithm Using Decorrelation and Block Matrix

Jun-an Yang, Xue-ping He, Yunxiao Jiang
{"title":"A Fast Blind Deconvolution Algorithm Using Decorrelation and Block Matrix","authors":"Jun-an Yang, Xue-ping He, Yunxiao Jiang","doi":"10.1109/ICNC.2007.21","DOIUrl":null,"url":null,"abstract":"In order to alleviate the shortcomings of most blind deconvolution algorithms, this paper proposes an improved fast algorithm for blind deconvolution based on decorrelation technique and broadband block matrix. Althougth the original algorithm proposed in ref (H. Buchner et al., 2003) can overcome the shortcomings of current blind deconvolution algorithms, but it has a constraint that the number of the source signals must be less than that of the channels'. The improved algorithm deletes this constraint by using decorrelation technique. Besides, the improved algorithm raises the separation speed in terms of improving the computing methods of output signals matrix. Simulation results demonstrate the validation and fast separation of the improved algorithm.","PeriodicalId":250881,"journal":{"name":"Third International Conference on Natural Computation (ICNC 2007)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Natural Computation (ICNC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2007.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to alleviate the shortcomings of most blind deconvolution algorithms, this paper proposes an improved fast algorithm for blind deconvolution based on decorrelation technique and broadband block matrix. Althougth the original algorithm proposed in ref (H. Buchner et al., 2003) can overcome the shortcomings of current blind deconvolution algorithms, but it has a constraint that the number of the source signals must be less than that of the channels'. The improved algorithm deletes this constraint by using decorrelation technique. Besides, the improved algorithm raises the separation speed in terms of improving the computing methods of output signals matrix. Simulation results demonstrate the validation and fast separation of the improved algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于去相关和分块矩阵的快速盲反卷积算法
针对大多数盲反卷积算法的不足,提出了一种基于去相关技术和宽带分块矩阵的快速盲反卷积改进算法。虽然在ref (H. Buchner et al., 2003)中提出的原始算法可以克服当前盲反卷积算法的缺点,但它有一个约束,即源信号的数量必须小于信道的数量。改进算法利用去相关技术消除该约束。改进后的算法在改进输出信号矩阵的计算方法方面提高了分离速度。仿真结果验证了改进算法的有效性和分离速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Emotional Evaluation of Color Patterns Based on Rough Sets Uniqueness of Linear Combinations of Ridge Functions PID Neural Network Temperature Control System in Plastic Injecting-moulding Machine The Study of Membrane Fouling Modeling Method Based on Wavelet Neural Network for Sewage Treatment Membrane Bioreactor Simulation and Research of the PCB Vias Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1