Effect of Temperature and Potential on BCC-Fe Nanoindentation Process

Dexing Wang, P. Lin, Libin Sun, Z. Cai
{"title":"Effect of Temperature and Potential on BCC-Fe Nanoindentation Process","authors":"Dexing Wang, P. Lin, Libin Sun, Z. Cai","doi":"10.1115/icone29-91251","DOIUrl":null,"url":null,"abstract":"\n The irradiation mechanism of iron-based alloys has proven to be related to dislocation movement and interaction between dislocation and irradiation defect. Fe is an important element of the iron-based alloys. The single crystal iron is selected as the material of the indenter and the substrate when molecular dynamics (MD) simulation is launched. This article studies the effect of the different temperature and potential functions on the dislocation evolution and mechanical properties of single crystal iron in the nanoindentation process.\n Results show that temperature affects the load-displacement curve; the potential has no effect on the trend of the load-displacement curve, but it has an impact on the value of the load; the dislocation behavior of the substrate after compression results in a jagged load-displacement curve (pop-in event). These results are of great significance for understanding the dislocation behavior of the typical body centered cubic (BCC) metal during nanoindentation process.","PeriodicalId":302303,"journal":{"name":"Volume 15: Student Paper Competition","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 15: Student Paper Competition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/icone29-91251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The irradiation mechanism of iron-based alloys has proven to be related to dislocation movement and interaction between dislocation and irradiation defect. Fe is an important element of the iron-based alloys. The single crystal iron is selected as the material of the indenter and the substrate when molecular dynamics (MD) simulation is launched. This article studies the effect of the different temperature and potential functions on the dislocation evolution and mechanical properties of single crystal iron in the nanoindentation process. Results show that temperature affects the load-displacement curve; the potential has no effect on the trend of the load-displacement curve, but it has an impact on the value of the load; the dislocation behavior of the substrate after compression results in a jagged load-displacement curve (pop-in event). These results are of great significance for understanding the dislocation behavior of the typical body centered cubic (BCC) metal during nanoindentation process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
温度和电势对BCC-Fe纳米压痕工艺的影响
铁基合金的辐照机理与位错运动及位错与辐照缺陷的相互作用有关。铁是铁基合金的重要元素。在进行分子动力学模拟时,选择单晶铁作为压头和衬底的材料。本文研究了纳米压痕过程中不同温度和势函数对单晶铁的位错演化和力学性能的影响。结果表明:温度对荷载-位移曲线有影响;势对荷载-位移曲线趋势无影响,但对荷载值有影响;压缩后基体的位错行为导致了锯齿形的载荷-位移曲线(弹出事件)。这些结果对于理解典型体心立方金属在纳米压痕过程中的位错行为具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Generalization of Typical Data-Driven Fault Diagnosis Methods for Nuclear Power Plants Heat Transfer Characteristics of Different Horizontal Wires in Pools of Liquid and Supercritical Carbon Dioxide Specifics of Calculating Thermophysical Properties of CO2 and R134a in Critical Point Using NIST REFPROP Radiation Shielding Towards Commonly Available Objects Preliminary Core Calculation on Reactivity Compensation for SiC Matrix Fuel Compact HTTR With Erbium Burnable Poison and Plutonium Fissile Material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1