Minimax Lower Bound of k-Monotone Estimation in the Sup-norm

Teresa M. Lebair, Jinglai Shen
{"title":"Minimax Lower Bound of k-Monotone Estimation in the Sup-norm","authors":"Teresa M. Lebair, Jinglai Shen","doi":"10.1109/CISS.2019.8692914","DOIUrl":null,"url":null,"abstract":"Belonging to the framework of shape constrained estimation, k-monotone estimation refers to the nonparametric estimation of univariate k-monotone functions, e.g., monotone and convex unctions. This paper develops minimax lower bounds for k-monotone regression problems under the sup-norm for general k by constructing a family of k-monotone piecewise polynomial functions (or hypotheses) belonging to suitable Hölder and Sobolev classes. After establishing that these hypotheses satisfy several properties, we employ results from general min-imax lower bound theory to obtain the desired k-monotone regression minimax lower bound. Implications and extensions are also discussed.","PeriodicalId":123696,"journal":{"name":"2019 53rd Annual Conference on Information Sciences and Systems (CISS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2019.8692914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Belonging to the framework of shape constrained estimation, k-monotone estimation refers to the nonparametric estimation of univariate k-monotone functions, e.g., monotone and convex unctions. This paper develops minimax lower bounds for k-monotone regression problems under the sup-norm for general k by constructing a family of k-monotone piecewise polynomial functions (or hypotheses) belonging to suitable Hölder and Sobolev classes. After establishing that these hypotheses satisfy several properties, we employ results from general min-imax lower bound theory to obtain the desired k-monotone regression minimax lower bound. Implications and extensions are also discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
上范数下k-单调估计的极大极小下界
k单调估计属于形状约束估计的框架,是指单变量k单调函数(如单调函数和凸函数)的非参数估计。本文通过构造属于合适的Hölder和Sobolev类的k-单调分段多项式函数(或假设)族,给出了一般k的上范数下k-单调回归问题的极大极小下界。在证明这些假设满足若干性质后,我们利用一般最小-最大下界理论的结果得到了期望的k-单调回归最小-最大下界。还讨论了其含义和扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Prospect Theoretical Extension of a Communication Game Under Jamming Smoothed First-order Algorithms for Expectation-valued Constrained Problems Secure Key Generation for Distributed Inference in IoT Invited Presentation Exponential Error Bounds and Decoding Complexity for Block Codes Constructed by Unit Memory Trellis Codes of Branch Length Two Deep learning to detect catheter tips in vivo during photoacoustic-guided catheter interventions : Invited Presentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1