Feature Extraction with Triplet Loss to Classify Disease on Leaf Data

Ty V. Nguyen, Incheon Paik
{"title":"Feature Extraction with Triplet Loss to Classify Disease on Leaf Data","authors":"Ty V. Nguyen, Incheon Paik","doi":"10.1109/iCAST51195.2020.9319494","DOIUrl":null,"url":null,"abstract":"This paper addresses the plant disease detection and classification using Deep Learning approach. In particular, we propose a novel model using the Triplet Loss together with the fine-tuned pre-trained MobileNet model to extract good features, classify, and detect diseases of plants from the open-source PlantVillage dataset. Using our proposed model, the achievable results are 99.92%, which outperforms the existing models using the same dataset. Furthermore, our proposed model can support the large-scale agricultural sector, which plays an important role in ensuring food security during the current COVID-19 crisis.","PeriodicalId":212570,"journal":{"name":"2020 11th International Conference on Awareness Science and Technology (iCAST)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th International Conference on Awareness Science and Technology (iCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iCAST51195.2020.9319494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper addresses the plant disease detection and classification using Deep Learning approach. In particular, we propose a novel model using the Triplet Loss together with the fine-tuned pre-trained MobileNet model to extract good features, classify, and detect diseases of plants from the open-source PlantVillage dataset. Using our proposed model, the achievable results are 99.92%, which outperforms the existing models using the same dataset. Furthermore, our proposed model can support the large-scale agricultural sector, which plays an important role in ensuring food security during the current COVID-19 crisis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于三元损失特征提取的叶片数据疾病分类
本文利用深度学习方法对植物病害进行检测和分类。特别地,我们提出了一个新的模型,使用Triplet Loss和微调的预训练的MobileNet模型从开源的PlantVillage数据集中提取植物的良好特征,分类和检测植物的疾病。使用该模型,可实现的结果为99.92%,优于使用相同数据集的现有模型。此外,我们提出的模型可以支持大规模农业部门,在当前COVID-19危机期间,农业部门在确保粮食安全方面发挥着重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Skeleton Guided Conflict-Free Hand Gesture Recognition for Robot Control Improved Spiking Neural Networks with multiple neurons for digit recognition A Lightweight Transformer with Convolutional Attention Social Media Mining with Dynamic Clustering: A Case Study by COVID-19 Tweets A Visual-SLAM based Line Laser Scanning System using Semantically Segmented Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1