Towards Adaptive Classification using Riemannian Geometry approaches in Brain-Computer Interfaces

Satyam Kumar, F. Yger, F. Lotte
{"title":"Towards Adaptive Classification using Riemannian Geometry approaches in Brain-Computer Interfaces","authors":"Satyam Kumar, F. Yger, F. Lotte","doi":"10.1109/IWW-BCI.2019.8737349","DOIUrl":null,"url":null,"abstract":"The omnipresence of non-stationarity and noise in Electroencephalogram signals restricts the ubiquitous use of Brain-Computer interface. One of the possible ways to tackle this problem is to adapt the computational model used to detect and classify different mental states. Adapting the model will possibly help us to track the changes and thus reducing the effect of non-stationarities. In this paper, we present different adaptation strategies for state of the art Riemannian geometry based classifiers. The offline evaluation of our proposed methods on two different datasets showed a statistically significant improvement over baseline non-adaptive classifiers. Moreover, we also demonstrate that combining different (hybrid) adaptation strategies generally increased the performance over individual adaptation schemes. Also, the improvement in average classification accuracy for a 3-class mental imagery BCI with hybrid adaption is as high as around 17% above the baseline non-adaptive classifier.","PeriodicalId":345970,"journal":{"name":"2019 7th International Winter Conference on Brain-Computer Interface (BCI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Winter Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2019.8737349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

The omnipresence of non-stationarity and noise in Electroencephalogram signals restricts the ubiquitous use of Brain-Computer interface. One of the possible ways to tackle this problem is to adapt the computational model used to detect and classify different mental states. Adapting the model will possibly help us to track the changes and thus reducing the effect of non-stationarities. In this paper, we present different adaptation strategies for state of the art Riemannian geometry based classifiers. The offline evaluation of our proposed methods on two different datasets showed a statistically significant improvement over baseline non-adaptive classifiers. Moreover, we also demonstrate that combining different (hybrid) adaptation strategies generally increased the performance over individual adaptation schemes. Also, the improvement in average classification accuracy for a 3-class mental imagery BCI with hybrid adaption is as high as around 17% above the baseline non-adaptive classifier.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于黎曼几何方法的脑机接口自适应分类
脑电图信号的非平稳性和噪声的普遍存在限制了脑机接口的广泛应用。解决这个问题的一种可能方法是调整用于检测和分类不同心理状态的计算模型。调整模型可能会帮助我们跟踪变化,从而减少非平稳性的影响。在本文中,我们提出了不同的适应策略的最先进的黎曼几何为基础的分类器。我们提出的方法在两个不同数据集上的离线评估显示,与基线非自适应分类器相比,在统计上有显着改善。此外,我们还证明了组合不同(混合)适应策略通常比单个适应方案提高了性能。此外,混合自适应的3类心理意象BCI的平均分类准确率比基线非自适应分类器高出约17%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biometrics Based on Single-Trial EEG The Effect of a Binaural Beat Combined with Autonomous Sensory Meridian Response Triggers on Brainwave Entrainment Estimation of speed and direction of arm movements from M1 activity using a nonlinear neural decoder A Hybrid MI-SSVEP based Brain Computer Interface for Potential Upper Limb Neurorehabilitation: A Pilot Study Recurrent convolutional neural network model based on temporal and spatial feature for motor imagery classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1