Intent Detection on Indonesian Text Using Convolutional Neural Network

Chiva Olivia Bilah, T. B. Adji, N. A. Setiawan
{"title":"Intent Detection on Indonesian Text Using Convolutional Neural Network","authors":"Chiva Olivia Bilah, T. B. Adji, N. A. Setiawan","doi":"10.1109/CyberneticsCom55287.2022.9865291","DOIUrl":null,"url":null,"abstract":"NLP (Natural Language Processing) has become the focus of research in recent years. NLP tasks have been implemented in various sectors and fields. The chatbot system is one of the NLP tasks, which functions to communicate with humans using natural language. Many researchers build models to represent the chatbot. To make a chatbot more powerful, the intent of the conversation a set of sentences representing a specific user's intention when interacting with the chatbot, must be classified. This classification will make the chatbot system more focused, which leads to providing appropriate answers. Humans can simply understand the meaning of different sentences with the same intent. However, a chatbot system will require a complex technique. Therefore, our work uses the CNN (Convolutional Neural Network) for intent detection in Indonesian Language Text using ATIS (Airline Travel Information System) dataset. CNN was selected because it can extract important features from input data, which makes it more efficient than other deep learning algorithms, in terms of memory and complexity. In our work, we also used GloVe (Global Vectors) embedding for generating an optimal intent classification model. The result shows that the GloVe model and CNN produce the best accuracy of 95.84%.","PeriodicalId":178279,"journal":{"name":"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CyberneticsCom55287.2022.9865291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

NLP (Natural Language Processing) has become the focus of research in recent years. NLP tasks have been implemented in various sectors and fields. The chatbot system is one of the NLP tasks, which functions to communicate with humans using natural language. Many researchers build models to represent the chatbot. To make a chatbot more powerful, the intent of the conversation a set of sentences representing a specific user's intention when interacting with the chatbot, must be classified. This classification will make the chatbot system more focused, which leads to providing appropriate answers. Humans can simply understand the meaning of different sentences with the same intent. However, a chatbot system will require a complex technique. Therefore, our work uses the CNN (Convolutional Neural Network) for intent detection in Indonesian Language Text using ATIS (Airline Travel Information System) dataset. CNN was selected because it can extract important features from input data, which makes it more efficient than other deep learning algorithms, in terms of memory and complexity. In our work, we also used GloVe (Global Vectors) embedding for generating an optimal intent classification model. The result shows that the GloVe model and CNN produce the best accuracy of 95.84%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络的印尼语文本意图检测
自然语言处理(NLP)是近年来研究的热点。在各个部门和领域实施了自然语言处理任务。聊天机器人系统是NLP任务之一,其功能是使用自然语言与人类进行交流。许多研究人员建立模型来代表聊天机器人。为了使聊天机器人更强大,必须对会话的意图进行分类,即在与聊天机器人交互时代表特定用户意图的一组句子。这种分类将使聊天机器人系统更加专注,从而提供适当的答案。人类可以简单地理解具有相同意图的不同句子的意思。然而,聊天机器人系统需要复杂的技术。因此,我们的工作使用CNN(卷积神经网络)在印度尼西亚语文本中使用ATIS(航空旅行信息系统)数据集进行意图检测。CNN之所以被选中,是因为它可以从输入数据中提取重要的特征,这使得它在内存和复杂性方面比其他深度学习算法更高效。在我们的工作中,我们还使用GloVe(全局向量)嵌入来生成最优意图分类模型。结果表明,GloVe模型和CNN的准确率最高,达到95.84%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Method of Electroencephalography Electrode Selection for Motor Imagery Application Aspect-based Sentiment Analysis for Improving Online Learning Program Based on Student Feedback Fuzzy Logic Control Strategy for Axial Flux Permanent Magnet Synchronous Generator in WHM 1.5KW Welcome Message from General Chair The 6th Cyberneticscom 2022 Performance Comparison of AODV, AODV-ETX and Modified AODV-ETX in VANET using NS3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1