{"title":"Disaster-aware service provisioning by exploiting multipath routing with manycasting in telecom networks","authors":"S. Savas, F. Dikbiyik, M. F. Habib, B. Mukherjee","doi":"10.1109/ANTS.2013.6802863","DOIUrl":null,"url":null,"abstract":"Disasters may cause large-area failures in high-capacity telecom networks, leading to huge data loss. Survivable service provisioning is crucial to minimize the effects of network / datacenter failures and maintain critical services in case of a disaster. We propose a novel disaster-aware service-provisioning scheme that multiplexes service over multiple paths destined to multiple servers/datacenters with manycasting. Our scheme maintains some bandwidth (i.e., reduced service) after a disaster failure vs. no service at all. Numerical examples show that our approach offers high level of survivability against link and node failures that may be caused by disasters and post-disaster failures at no extra cost compared to the other survivable schemes.","PeriodicalId":286834,"journal":{"name":"2013 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANTS.2013.6802863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Disasters may cause large-area failures in high-capacity telecom networks, leading to huge data loss. Survivable service provisioning is crucial to minimize the effects of network / datacenter failures and maintain critical services in case of a disaster. We propose a novel disaster-aware service-provisioning scheme that multiplexes service over multiple paths destined to multiple servers/datacenters with manycasting. Our scheme maintains some bandwidth (i.e., reduced service) after a disaster failure vs. no service at all. Numerical examples show that our approach offers high level of survivability against link and node failures that may be caused by disasters and post-disaster failures at no extra cost compared to the other survivable schemes.