Notice of RetractionFuzzy Bayesian Networks and its application in pressure equipment's security alerts

Qin Liao, Zhicong Qiu, Jiepeng Zeng
{"title":"Notice of RetractionFuzzy Bayesian Networks and its application in pressure equipment's security alerts","authors":"Qin Liao, Zhicong Qiu, Jiepeng Zeng","doi":"10.1109/ICNC.2011.6022325","DOIUrl":null,"url":null,"abstract":"Because attribute variables, namely nodes of Bayesian Networks (BN) may have the characteristics of fuzziness and randomness simultaneously, a Fuzzy Bayesian Network (FBN) algorithm is proposed in this paper. We define fuzzy probability and Conditional Fuzzy Probability Table (CFPT) to express the relationship among variables having mixed uncertainty. We use genetic algorithm to optimize structure learning and parameters learning, feedback to find the optimal network structure according to reasoning error, and fix network parameters at the same time by modifying the parameters of membership function. Finally, we use the FBN algorithm to build the fuzzy Bayesian network and to knowledge reasoning on the data of industrial boilers' security alerts. Results demonstrate that FBN algorithm applied in mixed uncertainty problems is more effective compared with existing BN algorithms.","PeriodicalId":299503,"journal":{"name":"2011 Seventh International Conference on Natural Computation","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Seventh International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2011.6022325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Because attribute variables, namely nodes of Bayesian Networks (BN) may have the characteristics of fuzziness and randomness simultaneously, a Fuzzy Bayesian Network (FBN) algorithm is proposed in this paper. We define fuzzy probability and Conditional Fuzzy Probability Table (CFPT) to express the relationship among variables having mixed uncertainty. We use genetic algorithm to optimize structure learning and parameters learning, feedback to find the optimal network structure according to reasoning error, and fix network parameters at the same time by modifying the parameters of membership function. Finally, we use the FBN algorithm to build the fuzzy Bayesian network and to knowledge reasoning on the data of industrial boilers' security alerts. Results demonstrate that FBN algorithm applied in mixed uncertainty problems is more effective compared with existing BN algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模糊贝叶斯网络及其在压力设备安全报警中的应用
针对属性变量即贝叶斯网络(BN)节点可能同时具有模糊性和随机性的特点,提出了一种模糊贝叶斯网络(FBN)算法。我们定义了模糊概率和条件模糊概率表来表达具有混合不确定性的变量之间的关系。采用遗传算法对结构学习和参数学习进行优化,根据推理误差反馈找到最优网络结构,同时通过修改隶属函数参数来固定网络参数。最后,利用FBN算法建立了模糊贝叶斯网络,并对工业锅炉安全预警数据进行了知识推理。结果表明,与现有的BN算法相比,FBN算法在混合不确定性问题中的应用更为有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Notice of RetractionResearch on semi-active control of high-speed railway vehicle based on neural network-PID control Bethe approximation to inverse halftoning using multiple halftone images Hybrid crossover operator based on pattern MVN_CNN and UBN_CNN for endocardial edge detection A novel GPLS-GP algorithm and its application to air temperature prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1