Deep Learning-Based Discrete Calibrated Survival Prediction

Patrick Fuhlert, Anne Ernst, Esther Dietrich, Fabian Westhaeusser, K. Kloiber, Stefan Bonn
{"title":"Deep Learning-Based Discrete Calibrated Survival Prediction","authors":"Patrick Fuhlert, Anne Ernst, Esther Dietrich, Fabian Westhaeusser, K. Kloiber, Stefan Bonn","doi":"10.1109/ICDH55609.2022.00034","DOIUrl":null,"url":null,"abstract":"Deep neural networks for survival prediction outperform classical approaches in discrimination, which is the ordering of patients according to their time-of-event. Conversely, classical approaches like the Cox Proportional Hazards model display much better calibration, the correct temporal prediction of events of the underlying distribution. Especially in the medical domain, where it is critical to predict the survival of a single patient, both discrimination and calibration are important performance metrics. Here we present Discrete Calibrated Survival (DCS), a novel deep neural network for discriminated and calibrated survival prediction that outperforms competing survival models in discrimination on three medical datasets, while achieving best calibration among all discrete time models. The enhanced performance of DCS can be attributed to two novel features, the variable temporal output node spacing and the novel loss term that optimizes the use of uncensored and censored patient data. We believe that DCS is an important step towards clinical application of deep-learning-based survival prediction with state-of-the-art discrimination and good calibration.","PeriodicalId":120923,"journal":{"name":"2022 IEEE International Conference on Digital Health (ICDH)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Digital Health (ICDH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDH55609.2022.00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Deep neural networks for survival prediction outperform classical approaches in discrimination, which is the ordering of patients according to their time-of-event. Conversely, classical approaches like the Cox Proportional Hazards model display much better calibration, the correct temporal prediction of events of the underlying distribution. Especially in the medical domain, where it is critical to predict the survival of a single patient, both discrimination and calibration are important performance metrics. Here we present Discrete Calibrated Survival (DCS), a novel deep neural network for discriminated and calibrated survival prediction that outperforms competing survival models in discrimination on three medical datasets, while achieving best calibration among all discrete time models. The enhanced performance of DCS can be attributed to two novel features, the variable temporal output node spacing and the novel loss term that optimizes the use of uncensored and censored patient data. We believe that DCS is an important step towards clinical application of deep-learning-based survival prediction with state-of-the-art discrimination and good calibration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的离散校准生存预测
用于生存预测的深度神经网络在区分方面优于经典方法,即根据患者的事件时间对患者进行排序。相反,像Cox比例风险模型这样的经典方法显示出更好的校准,对潜在分布事件的正确时间预测。特别是在医疗领域,预测单个患者的生存至关重要,区分和校准都是重要的性能指标。在这里,我们提出了离散校准生存(DCS),这是一种用于判别和校准生存预测的新型深度神经网络,在三个医疗数据集的判别方面优于竞争生存模型,同时在所有离散时间模型中实现最佳校准。DCS的增强性能可归因于两个新的特征,可变时间输出节点间隔和新的损失项,优化了未审查和审查的患者数据的使用。我们认为DCS是迈向基于深度学习的生存预测临床应用的重要一步,具有最先进的识别和良好的校准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designing User-friendly Medical AI Applications - Methodical Development of User-centered Design Guidelines Digital Health Promotion For Fitness Enthusiasts In Africa Knowledge Management in a Healthcare Enterprise: Creation of a Digital Knowledge Repository A New Low-Cost and Accurate Diagnostic mHealth System for Patients with COVID-19 Pneumonia Detection of Erythropoietin in Blood to Uncover Doping in Sports using Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1